
∂t (ρi ui) = −∇ · (ρi ui)⊗ ui� �� �
Convection term

+
ρi

ρ
(µ∆u−∇ p)� �� �

viscosity & pressure forces

+
ρi

τi
(ud, i − ui)

� �� �
driving objective & ground friction

in population # i

+ ρi ηi����
stochastic acceleration

in population # i

∂tρ + ∇ρ · u

+ ρ∇ · u = 0

• Advantages:

•Well developed over 25 years

• Natural representation of 
social behaviors

• Disadvantages:

•Combinatorial complexity 
exclude real time utility

Fluid Models for Dense Crowd Tracking
Progress Report on a New Effort (Start: Fall 2009)

Oliver Lehmann and Gilead Tadmor, ECE & Math, Northeastern University, tadmor@coe.neu.edu

This material is based upon work supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001. The views and 
conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed 
or implied of the U.S. Department of Homeland Security.

The Complexity Challenge

• Spectators entering or leaving 
a sport events 

• Downtown sidewalk at noon

• Central underground station

•A bussy airport terminal

•An open air market

• Large polytical rallies

Big Picture Objective: Dynamic Resource Allocation

• Develop low resolution tracking for dense crowds

• Integrate large and low density methods

Crowd level(s) continuum viewcontinuum view
•sparse camera cover
• low computational 
resources / area

Group level(s)

}  individuall view
•dense camera cover
• high computational 
resources / areaIndividual level }  individuall view
•dense camera cover
• high computational 
resources / area

Background: Physically Inspired Flow Models

Examples of Driving Scenarios:

macro level: crowd meso level: group micro level: individual

baseline surveillance flagged area flagged persons

sparse resources increased resources dense resources

���alarm

relax
���alarm

relax

State of the Art in Crowd Flow Models

• Off-line simulation-based prediction and design 
optimization of safe public environment

• Off-line crowd behavior analysis from video data

• Real-time crowd behavior analysis: still “in diapers”

• Animation, motion synthesis

Guiding Principle: Simplicity @ the limit to ∞

• Shift from individuals to mass flow

• State components:

- the distributed velocity field 

- crowd / sub-population densities

• Physically inspired models:

- statistical mechanics: granular flow models 

- fluid mechanics: continuum models

• Behavioral pattern ⇔ Values of model parameters

• Tracking ⇔ Real time model parameter estimation

• Event detection ⇔ Model invalidation, abrupt parameter changes
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(a)

(b)

(c)

Fig. 2. (a) An illustration of streaklines for a video sequence. (b) The crowd segmen-
tation algorithm. (c) Abnormal behavior detection algorithm.

where u and v represent the velocity field obtained from optical flow. This yields
a family of curves, all starting at point p and tracing the path of the flow from
that point in frame i. Naturally, for steady flow all these curves lie along the same
path, but for unsteady flows the curves vary in direction and shape, characteristic
of pedestrian flow.

Particle advection for all i, t = 0, 1, 2, . . . , T using (1), yields a table of values
for xp

i (t) (shown in Table 2) and similarly for ypi (t). The columns of the table
show the pathlines Lp(t, T ), which are the particle trajectories from time t to T .
The rows provide the streaklines Sp(0, t), connecting all particles from t frames
that originated at point p. Corresponding to this table, Figure 1 illustrates the set
of streaklines and pathlines for an example unsteady flow at time t = T . At the
start of observation, particles are initiated at every time instant at point p. The
spectrum of lines from blue to orange represents the pathlines of particles which
have been initiated at time t = 0. The solid red color lines depict streaklines.
Since the flow is not steady, the streaklines and pathlines are different.

The unsteady flow at a point can be represented by either a set of pathlines
or a streakline. However, the streakline provides a speed and memory gain, as
a streakline with L particles corresponds to L pathlines with L × (L − 1)/2
particles. There are other interesting, less obvious, properties that streaklines
inherit from fluid mechanics. First, in unsteady flows, extra long streaklines may
exhibit shapes inconsistent with the actual flow, meaning they can not be allowed
to get too long [20]. Second, as invented for visualization purposes, streaklines in
fluids transport a color material along the flow, meaning they propagate changes
in the flow along their path. Similarly, our setup allows streaklines to propagate
velocities, given by the instantaneous optical flow Ω = (u, v)T at the time of
initialization, along the flow like a material. To this end, we define an extended
particle i as a set of position and initial velocity

Pi = {xi(t), yi(t), ui, vi}, (2)

where ui = u(xp
i (i), y

p
i (i), i), and vi = v(xp

i (i), y
p
i (i), i). In the whole scene,

we consider only streaklines comprising extended particles. Figure 2.a depicts
streaklines for an example sequence.

(a) t = 0s (b) t = 15s (c) t = 30s (d) t = 50s

Fig. 7. (a) to (d) Images of the real sequence - (e) to (h) Estimated disturbance potential maps

The range of validity of our system, in terms of crowd density, has thus to be clearly

established. Also, we have only treated the case where only one type of crowd (one

common goal) is present in the image sequence. We believe that it is possible to handle

with our dynamical model more than one flux of people (distinct goals), thus allowing

to some extent a segmentation of the crowd flow. Finally, the disturbance potential is a

combination of several physical quantities such as density or pressure. We plan to use a

more sophisticated physical crowd model to estimate each of these quantities separately

in a variational assimilation framework. Those aspects are part of our future works.

5 Conclusion and Future Works

We have presented in this paper a complete framework dedicated to the analysis of

dense crowd video sequences. Our approach relies on the coupling of observed data ex-

tracted from the image sequences and an ad-hoc crowd dynamics model that capture the

intrinsic relation between velocity and a disturbance potential (related to density, pres-

sure, ...) in the crowd flow. This allows to derivate an efficient framework that computes

from a crowd image sequences both the disturbance potential and the velocity fields

over the entire sequence. The estimated disturbance potential has proved to be very in-

teresting in highlighting the main characteristics of a scene. This can serve as inputs

for event detection system or participate to our global comprehension on the underlying

dynamics of human crowds. Future works will consider a more precise investigation of

the disturbance potential to separate from this latter density, pressure and other quanti-

ties. We will also investigate sequences containing distinct fluxes of persons.
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Mehran & al. ECCV (2010)

density state

Allain & al. ACCV (2009)

velocity state

Achievements To Date

•Option I: Granular flow / statistical mechanics ✘

•Option II: Compressible fluid flow / fluid mechanics ✔
• Advantages:

• Far simpler model 

•Galerkin approximations 
facilitate real time estimation

• Disadvantages:

•A challenge to capture social 
phenomena with few 
parameters

Our Choice of a Modeling Paradigm

Developed, refined, coded & validated a parameterized 
Navier-Stokes inspired model structure

Momentum Eq

• Multiple populations with

• ρi (x): distributed density of population # i

• ui (x) distributed velocity of population # i

• ud,i (x) distributed desired velocity of population # i

• ρ (x) = Σρi(x) : combined density

• u (x) = ρ(x) \Σρi(x)ui (x) : locally averaged velocity

• τi(ui) = time constant of tracking desired path

mass conservationrepelling potential 
(“pressure”)
p =

1
1− ρ

ρsat

Validation: Reproducing Generic Social Patterns

Example: Spontaneous lane formations by pedestrian  
walking in opposite directions, in a corridor

•pedestrians enter, using the entry’s full width

•color code: total mass flux. Red: left-to-right population 
dominates. Blue: Right-to-left population dominates.

• White curves: Streamlines of left-to-right population. Black 
curves: Same for right-to-left population

time=3 time=8

time=61 time=238

Present & Near Future Effort

•Real time model parameter estimation from benchmark video 
data sets

•Model refinement to match a large number of populations and 
complex geometries. Driving scenario: Pedestrians heading to 
different platforms and exits in an underground station

•Large influx / density variations

• Stochastic dominance over targeted motion (an open market 
scenario) 

Complexity precludes individual tracking & behavior 
analysis in very large and dense crowd scenes

Example: A 4 populations / crossing corridors variant

•Arrows: momenta vectors of the 4 
populations

•Color code: combined density of 
all pedestrians
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