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The dynamic behavior of various sandwich
composites made of E-Glass Vinyl-Ester and
Corecell A-series foam have been studied using a
shock tube apparatus. For the polyurea
investigation, the foam core was monotonically
graded based on increasing wave impedance, and
the influence of the polyurea location on the
overall dynamic behavior was studied. For the
CoreShell Rubber (CSR) vs Non-CSR toughened
resin composite investigation, the core was
homogeneous, and the influence of the coreshell
rubber nano-particles on the overall dynamic
behavior was studied. A high-speed side-view
camera, along with a high-speed back-view 3-D
Digital Image Correlation (DIC) system was utilized
to capture the real timedeformation process as
well as mechanisms of failure. Post mortem
analysis was also carried out to evaluate the overall
blast performance. Results will help in designing
new and more efficient blast mitigating materials
and structures.

With an increased threat of damage to civilian and
defense structures in the form of blast loading there
has arisen a need to replace conventional structural
materials with improved blast resistant material as
well as generate new ideas to mitigate blast over-
pressure.
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Experimental Set-up and Procedure: Materials and Specimens:
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Results:

Blast loading on civilian 
structures

Blast attack on USS Cole Blast attack on Army structures

Consulting with Industry:

1. TPI Composites, Warren, RI
2. Specialty Products Inc.(SPI), Lakewood, 
Washington
3. Gurit SP Technology, Quebec, Canada

New types of sandwich structures were designed and
fabricated to withstand blast loadings and mitigate
blast overpressures. Technical collaboration with TPI
Composites, Specialty Products Inc., and Gurit SP
Technology will help in fascilitating sample
preparation. This effort also aligns with the mission of
DHS to transition technology and allow for a unified
effort to protect our homeland.
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1. The effect of equivalent core layer mass vs. equivalent core
layer thickness in the blast response of sandwich structures

A comprehensive series of shock tube experiments were
conducted on sandwich panels consisting of composite
facesheets and energy absorbing core materials in order to
evaluate the overall blast response and mitigation capabilities

Major Results

1. Polyurea Investigation: The application of polyurea behind
foam core and in front of back facesheet (configuration 2)
allows for stepwise compresison of core, reducing deflections,
in-plane strains, back face velocities and overall damage

2. CSR vs Non-CSR Toughened Composite Investigation: The
addition of nano-scale Coreshell Rubber (CSR) particles to the
resin system of the sandwich structures, aids in dispersing the
initial impulse of the shock wave, thus reducing deflections,
in-plane strains, and back face velocites and overall damage

Previously, the main focus of research in this area
has been on the numerical and theoretical behavior
of functionally graded materials. Experimental work
on the dynamic response of composites with
polyurea, as well as steel plates with polyurea has
been investigated, but there has been no research
regarding the dynamic response of sandwich
composites with polyurea interlayer. Also, the
addition of core shell rubber (CSR) to sandwich
structures and their influence on blast loading is a
relativley new application and investigation.
Previously, only the impact response of core shell
rubber (CSR) toughened composites has been
studied.
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Toughened Sandwich Composites
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High Speed Images of CSR and Non-CSR Toughened Sandwich Composites
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