Motivations and Objectives

- $\mathrm{H}_{2} \mathrm{O}_{2}$ is a strong oxidizer and even explosive, and is often used as IED \square Stability and behavior of $\mathrm{H}_{2} \mathrm{O}_{2}$ and water mixtures are not known \square Shock-induced detonation of concentrated $\mathrm{H}_{2} \mathrm{O}_{2}$ has been observed at ${ }^{\sim} 13-15 \mathrm{GPa}$ Behaviors of highly concentrated $\mathrm{H}_{2} \mathrm{O}_{2}$ are not known under static high pressures

Mitigating chemical and shock threats of $\mathrm{H}_{2} \mathrm{O}_{2}$ requires understanding of the stability of $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{H}_{2} \mathrm{O}$ mixtures at relevant thermal conditions

Experimental Approach

Under Static High Pressure at WSU

Diamond anvil cell Pressurizing

Confocal micro-Raman Phase mapping

Synchrotron x-rays Characterization

Under Dynamic High Pressure at LANL

$\mathrm{H}_{2} \mathrm{O}_{2}$ target with stress gauge

Loading $\mathrm{H}_{2} \mathrm{O}_{2}$

2-Stage gas gun

Phase Transitions in $\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$

- Phase transition at 13 GPa from $\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{I}$ to -II, based on Raman and x-ray data

It accompanies a volume collapse of $\sim 8.6 \%$

- Pure $\mathrm{H}_{2} \mathrm{O}_{2}$ is chemically stable to pressures 18 GPa

Behaviors of Binary Mixtures: $\mathrm{H}_{\mathbf{2}} \mathrm{O}+\mathrm{H}_{\mathbf{2}} \mathrm{O}_{\mathbf{2}}$

- Phase transition occurs at lower pressure for diluted samples.
- Oxygen clathrates are observed at low concentrated mixtures

The presence of water stabilizes the $\mathrm{H}_{2} \mathrm{O}_{2}$ mixtures by forming stronger hydrogen bonds

Chemical Decomposition of Compressed $\mathrm{H}_{2} \mathrm{O}_{2}$
O_{2} from $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposition EOS comparison of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{2}$

$\mathrm{H}_{2} \mathrm{O}_{2}$ decomposition across the melting at 2.5 GPa

Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is driven by densification and melting

Detonation in Shocked $\mathrm{H}_{2} \mathrm{O}_{2}$
Homogenous detonation model

