

- \Box H₂O₂ is a strong oxidizer and even explosive, and is often used as IED
- \Box Stability and behavior of H₂O₂ and water mixtures are not known
- \Box Shock-induced detonation of concentrated H₂O₂ has been observed at ~13-15 GPa
- \Box Behaviors of highly concentrated H_2O_2 are not known under static high pressures

Mitigating chemical and shock threats of H₂O₂ requires understanding of the stability of H_2O_2 - H_2O mixtures at relevant thermal conditions

Experimental Approach

Under Static High Pressure at WSU

Diamond anvil cell Pressurizing

Confocal micro-Raman Phase mapping

Synchrotron x-rays Characterization

 H_2O_2 target with stress gauge

Loading H_2O_2

The work has been supported by the US DHS under the grant number 2008-ST-061-ED0001. For details, please contact jychen@wsu.edu or csyoo@wsu.edu

Physical and chemical changes of hydrogen peroxide under high pressures

Jing-Yin Chen and Choong-Shik Yoo (PI) Washington State University, Pullman, Washington 99164

Phase Transitions in H₂O₂

- \Box Phase transition at 13 GPa from H₂O₂-I to -II, based on Raman and x-ray data
- □ It accompanies a volume collapse of ~ 8.6%
- \Box Pure H₂O₂ is chemically stable to pressures 18 GPa

Chemical Decomposition of Compressed H₂**O**₂

2-Stage gas gun

H₂O₂ decomposition across the melting at 2.5 GPa

Decomposition of H_2O_2 is driven by densification and melting

Is shock-induced detonation different from the static pressure-induced decomposition ?

Behaviors of Binary Mixtures: H₂O + H₂O,

Detonation in Shocked H₂O₂