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Motivations and Objectives

Experimental Approach
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 Phase transition occurs at lower pressure for 
diluted samples.

 Oxygen clathrates are observed at low 
concentrated mixtures

Phase Transitions in H2O2

Chemical Decomposition of Compressed H2O2

Behaviors of Binary Mixtures: H2O + H2O2

Detonation in Shocked H2O2
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Under Static High Pressure at WSU

Under Dynamic High Pressure at LANL

Ref: H. Cynn, S.A. Sheffield & C.S. Yoo, J Chem. Phys. 110, 1999, 6836-6843

Mitigating chemical and shock threats of H2O2 requires understanding 
of the stability of H2O2-H2O mixtures at relevant thermal conditions

 H2O2 is a strong oxidizer and even explosive, and is often used as IED 

 Stability and behavior of H2O2 and water mixtures are not known

 Shock-induced detonation of concentrated H2O2 has been observed at ~13-15 GPa

 Behaviors of highly concentrated H2O2 are not known under static high pressures
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 Phase transition at 13 GPa from H2O2-I to -II, based on Raman and x-ray data

 It accompanies a volume collapse of ~ 8.6% 

 Pure H2O2 is  chemically stable to pressures 18 GPa

Is shock-induced detonation different from the static 
pressure-induced decomposition ?

The presence of water stabilizes the H2O2 mixtures by 
forming stronger hydrogen bonds

Ref: J.Y. Chen and C.S. Yoo, J. Chem. Phys. 132, 214501 (2010)
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H2O2 decomposition across the melting at 2.5 GPa
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Decomposition 
starts

Decomposition of H2O2 is driven by densification and melting
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Homogenous detonation model

 98 % H2O2 detonates at 6.7 Km/s (13-15 GPa).

 It seems to follow homogenous detonation model based on the spatially 
resolved wave profile measurement

 The work has been done in collaboration with D. Dattelbaum and S. 
Sheffield In LANL
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