Problem Statement
Landmark localization (i.e. key-point detection) & alignment

* Essential for many vision tasks: Face recognition, pose estimation,

expression analysis, much more

* Lots attention over years: revamped interest; DNNs push SOTA

Contribution 1
* Current SOTA landmark detectors have low confident mappings

Novel loss with high-order stats for increase in confidence (Fig 1).
Contribution 2

* Labeling i1s expensive, prone to human errors, and tedious; while

an abundance of faces are available for free online.
Mitigate label costs with a semi-supervised framework.
Contribution 3
* Practical aspects: storage costs and speed on mobile device.

Minimize storage costs, while maximizing performance on CPU.

Fig 1 Heatmaps: SAM-based models (right) & our LaplaceKL
(middle). Heatmaps are confidence scores that a pixel 1s a
landmark. SAM-based are highly scattered (low in certainty),
while our loss 1s concentrated (i.e. high in certainty). Importance
of minimizing scatter shown experimentally (Table 1).

1. LaplaceKL Loss
Softargmax [1] (SAM), expected value over 2D normalized heatmap

softargmax(Sh) = Z softargmax(Shy) - x (1)
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2. Semi-supervised Framework

* Implemented semi-supervised adversarial framework (Fig 2)

£adv — 10g D(Dllta Hreal]) + 1Og(1 _ D([ ?7 Hfake]) (4)

Fake * Used unlabeled Megaface (fake) to boost performance Eq (2, 4):
heatmaps o
Discriminator (D) m(%n (mgx ()\ - Loaav (G, D)) + EKL(G)) (5)

* More unlabeled data the better the performance (Table 1)
* More confident heatmaps (Fig 3); improved localization (Fig 5)

_.»Ca,dv

Real
L1 heatmaps

Fig 2 Semi-supervised framework for landmarks localization. Given mput image, G makes K heatmaps, 1 per
landmark. Labels generate real heatmaps w(sl). G produces fake samples from unlabeled data. Source 1images
are concatenated on heatmaps and passed to D.

Table 2 NMSE for nets 1/8, 1/4, 1/2, 1 the
size (left-to-right). 2.8 GHz Intel Core 17 CPU.
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where K heatmaps (i.e., per landmark, h € R *hxw)),

Use higher-ord

oa=1). Thus, b =
Conveniently, KL has close-form solution for Laplacian [2]:

(2)

Lx1, =

er statistics to learn heatmaps with greater confidence:
Set S = Ep|x]| then Laplace(u,b = 1)Assume Laplacian (i.e.,

(1% — En[x][for 7(h) = p(x)[/x — |3

% a)n(a o) | Dicr (a(5/d) [p(s]d))]

defies the proposed LaplaceKL loss (Labelled branch in Fig. 2).

0.0389 0.1281 0.4781 1.8724
SAM 6.836 4.83 4.35 4.25
+D(70K) 6.34 4.85 4.38 4.29
LaplaceKL  5.09 4.39 4.04 4.01
+D(70K) 4.85 4.30 3.98 3.91
Size (MB)  0.162  0.507 1919  7.496 Fig 5 Samples of landmarks predicted with LaplaceKL
Speed (fps)  21.38 1677 11.92 4.92 (white), and ground-truth drawn as line segments (red).
Notice the predicted tends to overlap with the ground-truth.
Fig 3 Heatmaps predicted by our LaplaceKL+D(70K) . . .
(middle), SAM+D(70K) (right), and faces with ground-truth 3. P.ractlc.al Considerations
sketched in green (left). Colors set by value for heatmaps Conducted ablation studies on proposed loss:
generated. Note our loss predicts with greater confidence, * Reduced size by removing channels by factors of 2 (Table 2).
producing separated landmarks as seen in heatmap space— 6.7 » Swept values of key parameters (Fig 4).
proposed minimizes spread; SAM-based landmarks smudge. 61
, | Summary
Table 1 NMSE on AFLW & 300W normalized by BB & ('-',-)' 5.6
interocular, respectfully. ; 5 0 * Proposed loss function to minimize distribution of landmarks.
AFLW 300W ' ® Ist to consider the “spread” of predicted heatmaps.
Common Challenge  Full 9 O B=1 * Novel semi-supervised framework to leverage unlabeled data
SDM [Xiong et al] 5.43 5.57 15.40 7.52 3'90 5 1 5 5 10 (1.e., face 1magery) that 1s abundantly accessible.
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