

Problem Statement

Landmark localization (i.e. key-point detection) & alignment

- Essential for many vision tasks: Face recognition, pose estimation, expression analysis, much more
- Lots attention over years: revamped interest; DNNs push SOTA
 Contribution 1
- Current SOTA landmark detectors have low confident mappings Novel loss with high-order stats for *increase in confidence* (Fig 1).

Contribution 2

• Labeling is expensive, prone to human errors, and tedious; while an abundance of faces are available for free online.

Mitigate label costs with a semi-supervised framework.

Contribution 3

• Practical aspects: storage costs and speed on mobile device.

Minimize storage costs, while maximizing performance on CPU.

Fig 1 Heatmaps: SAM-based models (right) & our LaplaceKL (middle). Heatmaps are confidence scores that a pixel is a landmark. SAM-based are highly scattered (low in certainty), while our loss is concentrated (i.e. high in certainty). Importance of minimizing scatter shown experimentally (**Table 1**).

1. LaplaceKL Loss

Softargmax [1] (SAM), expected value over 2D normalized heatmap

$$\operatorname{softargmax}(\beta \mathbf{h}) = \sum_{x} \operatorname{softargmax}(\beta \mathbf{h_{x}}) \cdot x \qquad (1)$$

$$= \sum_{x} \frac{e^{\beta \mathbf{h_{x}}}}{\sum_{j} e^{\beta \mathbf{h_{j}}}} \cdot x$$

$$= \sum_{x} p(x) \cdot x = \mathbb{E}_{\mathbf{h}}[x]$$

where K heatmaps (i.e., per landmark, $\mathbf{h} \in \mathbb{R}^{K \times h \times w}$).

Use higher-order statistics to learn heatmaps with greater confidence: Set $\tilde{\mathbf{s}} = \mathbb{E}_{\mathbf{h}}[\mathbf{x}]$, then $\operatorname{Laplace}(\mu, b = 1)$ Assume Laplacian (i.e., $\alpha=1$). Thus, $b = \mathbb{E}_{\mathbf{h}}[|\mathbf{x} - \mathbb{E}_{\mathbf{h}}[\mathbf{x}]|]$ for $\tau(\tilde{\mathbf{h}}) = \sum p(\mathbf{x})||\mathbf{x} - \tilde{\mathbf{s}}||_{\alpha}^{\alpha}$ Conveniently, KL has close-form solution for Laplacian [2]:

(2)
$$\mathcal{L}_{KL} = \mathbb{E}_{(\mathbf{d}, \mathbf{s}) \sim p(\mathbf{d}, \mathbf{s})} \left[D_{KL}(q(\mathbf{s}|\mathbf{d})||p(\mathbf{s}|\mathbf{d})) \right]$$

defies the proposed LaplaceKL loss (Labelled branch in Fig. 2).

Laplace Landmark Localization

Joseph P Robinson¹, Sergey Tulyakov² and Yun Fu¹
Northeastern University, USA ²Snap Inc., USA

Fig 2 Semi-supervised framework for landmarks localization. Given input image, G makes K heatmaps, 1 per landmark. Labels generate real heatmaps $\omega(sl)$. G produces fake samples from unlabeled data. Source images are concatenated on heatmaps and passed to D.

Fig 3 Heatmaps predicted by our LaplaceKL+D(70K) (middle), SAM+D(70K) (right), and faces with ground-truth sketched in green (left). Colors set by value for heatmaps generated. Note our loss predicts with greater confidence, producing separated landmarks as seen in heatmap space—proposed minimizes spread; SAM-based landmarks smudge.

Table 1 NMSE on AFLW & 300W normalized by BB & interocular, respectfully.

	AFLW	300W		
		Common	Challenge	Full
SDM [Xiong et al]	5.43	5.57	15.40	7.52
CFSS [Lv et al]	2.17	4.36	7.56	4.99
RCSR [Wang et al]	_	4.01	8.58	4.90
RCN + (L+ELT) [Honari				
et al]	1.59	4.20	7.78	4.90
CPM+SBR [Dong et al]	2.14	3.28	7.58	4.10
SAM	2.26	3.48	7.39	4.25
SAM+D(10K)	_	3.34	7.90	4.23
SAM+D(30K)	_	3.41	7.99	4.31
SAM+D(50K)	_	3.41	8.06	4.32
SAM+D(70K)	_	3.34	8.17	4.29
LaplaceKL	1.97	3.28	7.01	4.01
LaplaceKL+D(10K)	_	3.26	6.96	3.99
LaplaceKL+D(30K)	_	3.29	6.74	3.96
LaplaceKL+D(50K)	_	3.26	6.71	3.94
LaplaceKL+D(70K)	_	3.19	6.87	3.91

Table 2 NMSE for nets 1/8, 1/4, 1/2, 1 the size (left-to-right). 2.8GHz Intel Core i7 CPU.

No. of parameters, millions			
31 1.8724			
4.25			
3 4.29			
4.01			
3.91			
9 7.496			
2 4.92			
-			

 $\beta = 1$

 \triangle b = 1

scale (b)

6.7

6.1

4.5

4.2

4.2

4.0

4.0

0.1

Fig. 4 Ablation study on LaplaceKL.

HSWN 4.1

0.5

5.6 5.0

2. Semi-supervised Framework

• Implemented semi-supervised adversarial framework (Fig 2)

$$\mathcal{L}_{\text{adv}} = \log D([\mathbf{D}_t^l, \mathbf{H}_{\text{real}}]) + \log(1 - D([\mathbf{D}_t^u, \mathbf{H}_{\text{fake}}])$$
(4)

• Used unlabeled Megaface (*fake*) to boost performance Eq (2, 4):

$$\min_{G} \left(\max_{D} \left(\lambda \cdot \mathcal{L}_{adv}(G, D) \right) + \mathcal{L}_{KL}(G) \right)$$
 (5)

- More unlabeled data the better the performance (**Table 1**)
- More confident heatmaps (Fig 3); improved localization (Fig 5)

Fig 5 Samples of landmarks predicted with LaplaceKL (white), and ground-truth drawn as line segments (red). Notice the predicted tends to overlap with the ground-truth.

3. Practical Considerations

Conducted ablation studies on proposed loss:

- Reduced size by removing channels by factors of 2 (Table 2).
- Swept values of key parameters (Fig 4).

Summary

- Proposed loss function to minimize distribution of landmarks.
- 1st to consider the "spread" of predicted heatmaps.
- Novel semi-supervised framework to leverage unlabeled data (i.e., face imagery) that is abundantly accessible.
- SOA on renown 300W dataset and 2nd to best on AFLW.
- Comparable performance in real-time with <400KB storage.

References

- S Honari, et al. *Improving landmark localization with semi-supervised learning*. CVPR 2018.
 M Hoffman, et al. *Stochastic variational inference*. The Journal of Machine Learning Research 2013.
- 3. X Xiong, F De la Torre. Supervised descent and its applications to face alignment. CVPR 2013. 4. J Lv, et al Deep regression arch w 2stage for high performance landmark detection CVPR 2017.
- 5. W Wang, et al *Recurrent convolutional shape regression*. TPAMI 2018.
- 6. Dong, et al. Supervision-by-registration unsupervised approach to improve landmarks CVPR 2018.

10.K Zhang, et al. Joint face detection & alignment using multitask cascade CNNs. IEEE SPL 2016.

- 7. C Sagonas, et al. 300 faces in-the-wild: 1st face landmark localization challenge. ICCVW 2013.
- 8. M Koestinger, et al. AFW: large-scale database for face landmark localization. ICCV 2011 9. A Nech, et al. Level playing field for million scale face recognition. CVPR 2017.
 - Contact

jrobins1@ece.neu.edu

jrobsvision.com

Snap Inc

