

Dry Transfer Methodology

Science and Technology

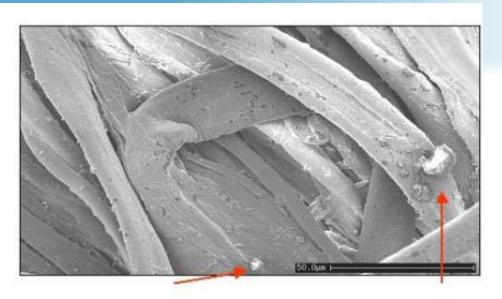
August 5, 2015

Dr. Richard Lareau

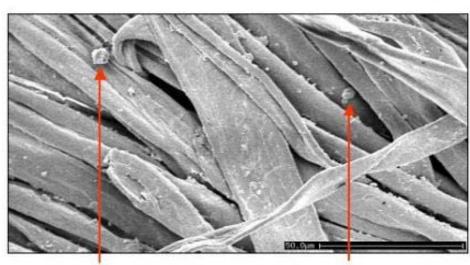
Technical Director (Acting)/Chief Scientist Transportation Security Laboratory W.J. Hughes Technical Center Atlantic City Internat'l Airport, NJ 08405

or Dry Transfer Methodology

- The Good, the Bad and the Ugly

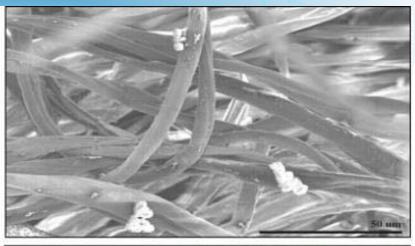


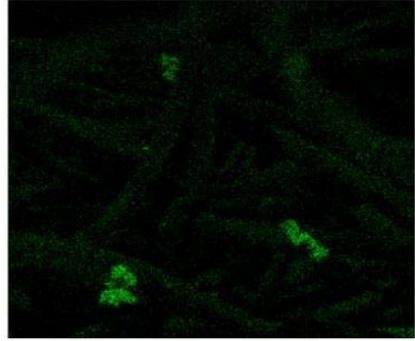
Qualitative and Quantitative Analysis of Explosives



Microscopy of Explosives

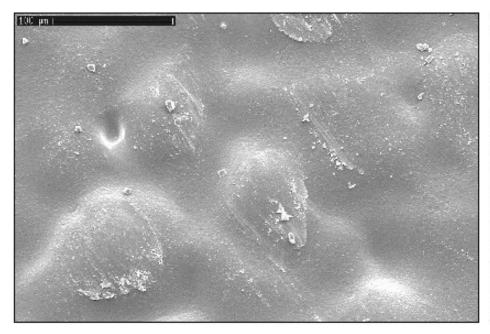
Fingerprint

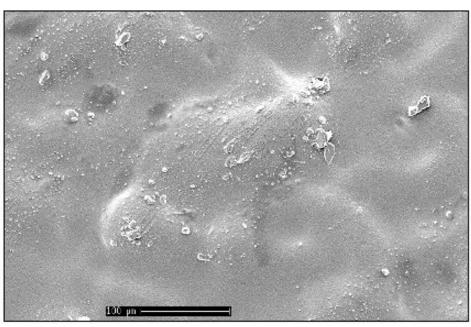

Dry Transfer



Microscopy of Explosives

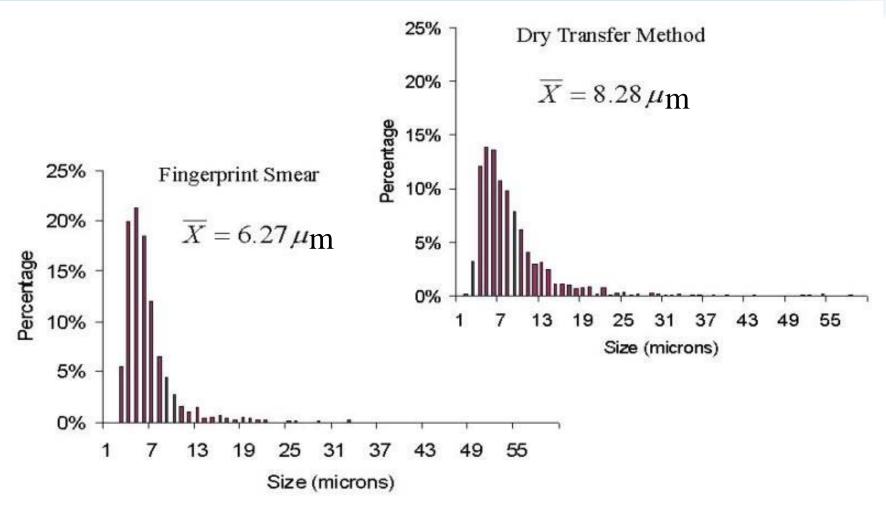
X-Ray Mapping (Dry Transfer)





Microscopy of Explosives

Fingerprint


Dry Transfer

SEM of floppy diskette surfaces

Particle Sizing of C-4 on Flannel Patch

Ref: TSL internal Techn. Report, @1999.

Standard Solution Prep;

- TSL prepares each threat standard solution via real explosive particles (powders), weighed and dissolved in carefully chosen solvents. These working solutions are then diluted to the requested concentrations, and QC performed.
- Alternatively, one could use COTS purchased standards and dilute, and perform QC.
- Deposition of standard is performed with calibrated micropipettes, carefully controlling the volume desired (e.g., 10 or 20 ul).

System Quality Control (SQC) Test Kit

System Quality Control

Dry Transfer Method

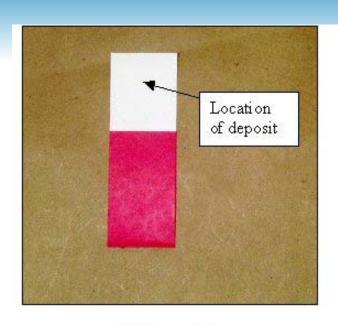
- Patent #647030, by Dr. Tom Chamberlain, PhD (retired)
- Secondary transfer of explosives onto a surface
- Rub firmly against the surface 3-4 times (back and forth motion)
- Explosive precipitate is quantitative, stable, and reproducible

Application

- Laboratory setting
 - R&D
 - Pre-certification
 - Certification
 - Acceptance testing of prototype ETDs
 - Part of procedures for measuring swipe sampling efficiencies.

System Quality Control (cont.)

- Applicable to all surfaces hard and soft, smooth and rough, solid and porous
 - ABS plastic
 - Vinyl
 - metal
 - Muslin
 - Luggage surfaces
 - ID Badges
 - Boarding Pass
 - Passport
 - Clothing
 - Etc.


Dry Transfer Methodology;

Direct transfer consists of depositing DEWS (or solvent) onto an SQC strip, allowing the solvent to evaporate, and dry transferring the material on the strip to ETD sampling media. A dry box is used to dry the solvent or explosive doped SQC strips.

- DEWS = Dissolved Explosives Working Solution
- SQC = System Quality Control check

SQC Kit Components; TSL old material

3" x 1"

- Red portion is manila paper
- White portion is Bytac® plastic

Plastic Mailer

SQC Kit Components – New material

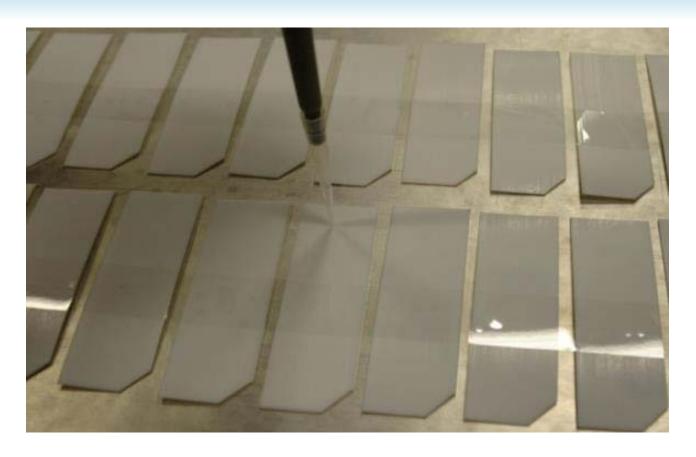
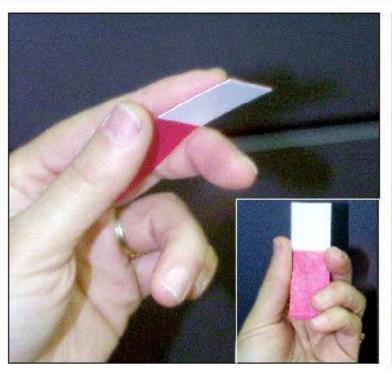
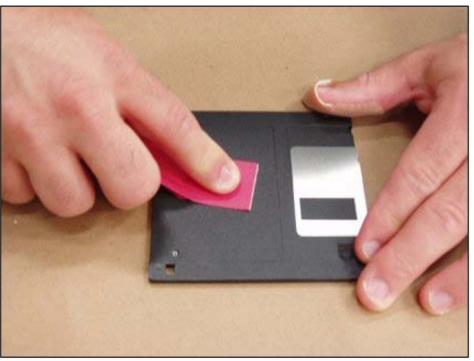
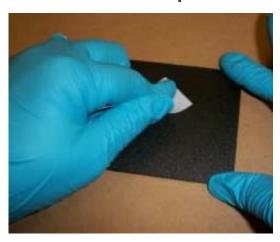




Figure - Depositing onto a SQC Strip

SQC - Application to a Surface

Rub firmly against the surface back and forth 3-4 times.



Preparing and Using Dry Transfer Strip

Deposition Area

 Figure 7. How to properly hold SQC strip prior to dry transfer and location of deposition area.



Figure 8. Test substrate with dry transfer being performed

Applying Dry Transfer to a Test Surface

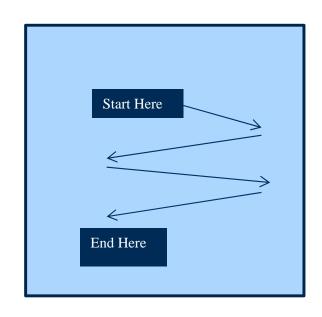


Figure - Example of direction of multi-cycle dry transfer

Quality Control assessments;

 Solvent extract all deposit from SQC and perform analysis (e.g., GC, HPLC, IC, TD-MS, etc.).

 Solvent extract remaining deposit from SQC, after transfer of deposit onto test substrate; perform analysis.

 Deposit threat/solvent directly into analytical vial, rather than Teflon SQC strip; perform analysis.

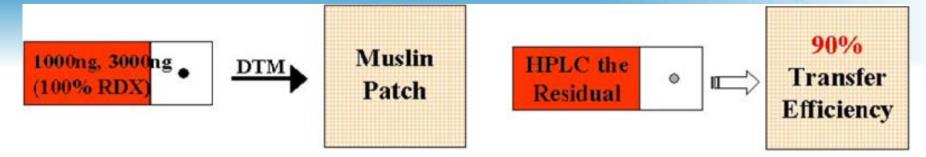
Controlling drying time/environ conditions

Dry boxes with N2 flow & environmental monitoring

SQC – Percent Recovery Study

Analytical Instrument: HPLC

C-4 Disks, 100ng	90%
C-4 Disks, 300ng	94%
C-4 Handles, 100ng	106%
Detasheet Disks, 100ng	104%
Detasheet Disks, 300ng	97%
Semtex-H Disks, 100ng (RDX)	105%
Semtex-H Disks, 300ng (RDX)	101%
Semtex-H Disks, 100ng (PETN)	111%
TNT Disks, 300ng	84%
TNT Handles, 300ng	58%
AVERAGE	95%


SQC - Percent Recovery Study

	lonscan 400B	EGIS II	itemiser²	Itemiser²	itemiser³	AVERAGE
	Cloth	Tab	Paper	MUST	Teflon	(for RDX)
SQC→ swab	97%	83%	98%	96%	70%	89%

Analytical Instrument: GC

SQC - Percent Recovery Study

1000ng Taflon Strip Residual RDX Analysis

Sample	Solution Cone. (ng/ul)	Residual Qty. (ng)	Transferred Qty. (ng)
T-1	0	0.0	1000
T-2	0.1404	70.2	930
T-3	0.3346	107.3	633
T-4	0.4800	240.0	780
T-6	0.0035	1.8	898
TS	0.0866	42.8	857
T-7	0.0756	37.8	982
T-8	0.8044	252.2	748
T-9	Q	0.0	1000
T-10	0.0471	23.6	976
WERAGE	TRANSFER	QUANTITY>	616

3000ng Teflon Strip Residual RDX Analys

Sample	Solutien Conc. (ng/ul)	Residual Qty. (ng)	Transferred Qty. (ng)	
T-11	1.285	642.5	2368	
T-12	0	0.0	3300	
T-13	0.7402	370.1	2530	
T-14	1.468	727.6	2273	
T-15	1.662	831.0	2189	
T 16	0.5026	281.3	2740	
T-17	0.4243	212.2	2786	
T-18	0 7720	356.0	2914	
T-19	0.1840	82.0	2318	
T-20	0.5656	282.8	2717	
AVERAGE TRANSFER QUANTITY> 2021				
Average Recovery: 87%				

Summary

Use of Dry Transfer;

- developed for specific laboratory use
- reasonable approximation of original threat properties
- * quantitative
- * transfers approximately 90% from Teflon to substrate (varies per analyte/solvent and environmental conditions

Recent DHS US Patent Ceremony – Dry Transfer Royalty Check...

Homeland Security

Science and Technology