

05 February 2016 © Crown copyright 2016 Dstl

Synthetic thumb for residue creation

Dr Matthew Brookes

Dstl Fellow, Explosives Detection Group, Counter Terrorism and Security Division Defence Science and Technology Laboratory, Fort Halstead, Sevenoaks, Kent TN14 7BP, UK <u>mdbrookes@dstl.gov.uk</u>

Project team: Dr Patrick Sears, Lauren Holley, Natasha Stephens, Adam Holland, Barry Whatmore, Catherine Skidmore

Funded by CONTEST, Department for Transport and MOD Countering Terrorist Weapons programmes

05 February 2016 © Crown copyright 2016 Ds

Background

- Detection of explosive traces underpins both high assurance search capability and aviation security screening
- Trace detection is an indirect technique inferring the presence of a larger bulk quantity
- Current swabbing protocols are derived from previous studies based on bomb-making simulations using plastic explosives

05 February 2016 © Crown copyright 2016 Ds

Aim

- Develop appropriate operational tools and protocols to detect emerging threats
 - Characterise primary and secondary contamination from a range of explosives on a number of realistic surface types
 - Understand the differences between plastic and crystalline explosives trace deposition, transfer and persistence

05 February 2016 © Crown copyright 2016 Dstl

So what's with the thumb?

- Some crystalline explosives are sensitive to impact and friction
 - Prohibits working with bulk
 - Prohibits compression by human finger
- A valid comparative study requires a standard deposition method
 - Material, surface profile, force, contact angle etc
 - Variability in deposition is expected
 - but should as far as possible be due to the intrinsic properties of the explosives
- The thumb force rig is designed to deposit residue to enable comparative trace characterisation and aid the development of realistic quantitative standards
- It is NOT intended to provide a quantitative standard!

05 February 2016 © Crown copyright 2016 Dst

Dragon Skin®

- Dragon Skin® Series silicones are high performance platinum cure silicone rubbers that cure at room temperature with negligible shrinkage
- Cured Dragon Skin[®] will stretch many times its original size without tearing and will return to its original form without distortion
- Dragon Skin® with Shore Hardness of 10A selected for artificial thumb based on matching size of thumb print to real print under same force
- Not intended to replicate skin in other respects, but can be used with synthetic sebum
- Provides a reference combining ridge properties of fingerprints with dielectric properties of latex/ nitrile glove

05 February 2016 © Crown copyright 2016 D

Method

- Dragon Skin® thumb cast from mould of thumb
- Supported by embedded disc attached to stainless steel rod
- Rod attached to Mecmesin force testing rig pressing thumb with 10N of force for 10s an approach speed of 5cm/s
- Initial loading by pressing into bulk
- Depletion series onto clean surface created
- Surface contamination studied by microscopy
- Samples extracted from surfaces and analysed by a validated LC-MS method

05 February 2016 © Crown copyright 2016 Dst

Deposition

05 February 2016 © Crown copyright 2016 Dstl

Deposition series

-									
1.mm pikan	1.00-00	4 mmi konseg	t and	5 MILE (1 MILE)	3.495 [3435	1 ADR	e alest	E stall	21 4915 1 102.25
Schurb Bale 12	Server 5 Galer (J	Serve S mile St	Holes S Holes (A	Gerven A Biller TA	Series 5 Unde 31	Series 5 Tode 57	Series 5 Sede 18	Serves 9 Sinde 10	Series 5 Vigle 20
***	888		888			88		688	
12 million	22 4970 5 100.45	12 49 M	A AND VIEWS	E raini	52 4945 6 54445	S and a second	int series.	62 995 5 59545	E SALAS
Series 1 Table 31	Serior 3 Steller SI	Securi S Sinda XX	Sectory 5 Table 54	Servery 5 Shake 15	Servers S SAde 36	Second S SACE 37	Server b Unio 30	Series &	Servi S Inde 67
								A	1

dstl

05 February 2016 © Crown copyright 2016 Dstl

Contamination on glass

05 February 2016 © Crown copyright 2016 Dstl

dst

Contamination on ABS

Print number

Ministry of Defence

© Crown copyright 2016 Dstl

05 February 2016

dst

Contamination on metal

05 February 2016 <u>© Crow</u>n copyright 2016 Dstl

dst

Particle sizing on glass

05 February 2016 <u>© Crow</u>n copyright 2016 Dstl

dstl

Particle sizing on glass

Ministry of Defence

05 February 2016 © Crown copyright 2016 Dstl

dst

Particle sizing on glass

Ministry of Defence

05 February 2016 © Crown copyright 2016 Dstl

dst

Results

- The crystalline explosives HMTD, PETN and Tetryl generally produce higher levels of absolute surface contamination than the plastic explosive PE4
- The most common particle size distribution for the 50th print for HMTD, PETN, Tetryl and RDX in PE4 is 0 - 250µm², but much larger particles are also present
 - NB Distribution will underestimate 0 250 um particles because some will be too small to visualise

	RDX (PE4)	HMTD	PETN	Tetryl
Density / g cm ⁻³	1.82	1.57	1.76	1.73
1000 μm ² particle mass / ng	43.3	37.3	41.9	41.2
250 μm ² particle mass / ng	5.4	4.7	5.2	5.1

(Spherical particle approximation)

05 February 2016 © Crown copyright 2016 Dstl

Raman chemical mapping

- Provides powerful automated capability to image and map chemical species
- Eg Thermo DXRxi

dstl 05 Febru © Crown

05 February 2016 © Crown copyright 2016 Dstl

RDX print using sebum-coated synthetic thumb

Optical image (left), Raman image (right), α-RDX = green, sebum = blue

[dstl]

05 February 2016 © Crown copyright 2016 Dstl

Inkjet printed RDX

RDX ink showing β -RDX in blue (left), RDX and sebum ink showing β -RDX in blue and sebum in red (right)

[dstl]

05 February 2016 © Crown copyright 2016 Dstl

PE4 thumb print on cardboard

Inset shows Raman mapping of RDX and binder

dstl

05 February 2016 © Crown copyright 2016 Dstl

PETN print on polyester-cotton

PETN = green, cotton = red, PET = blue

05 February 2016 © Crown copyright 2016 Dstl

PETN thumb-print on sports shoe

05 February 2016 © Crown copyright 2016 Dstl

Automated swab sampling

- Crockmeter system designed to produce repeatable 'rub' of material across surface
- Range of forces can be applied and swabbing at two speeds
- Develop a protocol for sampling of explosive trace from surfaces

05 February 2016 © Crown copyright 2016 Ds

Automated swab sampling

- Crockmeter performed well
 under test conditions
- Swabbing effectiveness
 increases with force
- Smooth surfaces >> Rough surfaces
- Natural materials outperformed synthetics
- System mimics 'expert manual user'

Bulk Explosive - Glass Surface

05 February 2016 © Crown copyright 2016 Dst

Conclusions

- The synthetic thumb force rig is a powerful characterisation tool
 - Not intended to produce *quantitative* standards, and cannot be used to do so
- Enabled the first comprehensive comparative study of crystalline and plastic explosives contamination
 - HMTD, PETN and Tetryl generally produce higher absolute levels of primary surface contamination than PE4
- Optical microscopy provides crucial insights into particle sampling challenges that quantitative analysis alone cannot
- Raman chemical mapping enables rapid characterisation and validation of printed quantitative standards

Stl 05 Februal © Crown c

05 February 2016 © Crown copyright 2016 Ds

Ongoing work

- Additional explosives
 RDX, TNT, C4 and Semtex
- Wider range of operationally relevant surfaces
 - e.g. cardboard, fabrics etc
- Secondary contamination
- The effects of cleaning

05 Februarv

- The effects of transport and agitation
- The effect of moisture and 'finger oils'

05 February 2016 © Crown copyright 2016 Dstl

