Describing Roughness During Contact Sampling: Statistical Considerations for Swab Screening Explosive Particulates

Swab Sampling

Trace Explosive Sampling

- Ion Mobility Spectrometer (IMS)
- > Trace particulates ~order of 10^{-5} m (~ 50μ m)
- Step 1 Removal

Adhesion

Three Primary Intermolecular Forces

- 1. van der Waals (vdW)
- 2. Capillary
- 3. Electrostatic

Measuring Adhesion

Atomic Force Microscopy

Modeling Adhesion – Surface Roughness

Surface Roughness

- 1. Decreases material in vdW contact
- 2. Increases variability of contact measurements

Distribution of Forces

Accounting for Surface Roughness

Modeling Adhesion of Rough Surfaces

$$F_{plates}(z) = -\frac{A}{6\pi z^3} \times Area \longrightarrow F_{total} = -\sum_{i}^{n_x} \sum_{j}^{n_y} \frac{A}{6\pi z_{ij}^3} \times Area_{ij}$$

Statistical Considerations

Statistical Considerations

Substrates Considered

Increasing Roughness

Substrate	RMS	Pk-to-Pk
Silica	0.63 ± 0.2 nm	12.8 <u>+</u> 7.9 nm
Stainless Steel	7.4 ± 1.9 nm	65.9 <u>+</u> 17.9 nm
Teflon	24.3 <u>+</u> 5.8 nm	181.2 <u>+</u> 52.7 nm

Bootstrap Method

Determine optimized number of samples required to fully characterize a substrate

Trace Explosives Application

Surfaces of Interest

Substrate Models

ABS Plastic

- ➢ µm-smooth
- ▶ µm-rough

Aluminum

➢ Paint-coated
➢ With native oxide

Substrate Roughness Characteristics

Substrate	RMS	Pk-to-Pk
ABS-smooth	66.8 ± 29.9 nm	459.8 ± 134.4 nm
ABS-rough	38.1 <u>+</u> 20.2 nm	288.6 <u>+</u> 129.8 nm
Aluminum (native oxide)	60.8 <u>+</u> 13.1 nm	359.1 <u>+</u> 120.3 nm
Aluminum (paint-coated)	3.6 ± 0.6 nm	72.6 <u>+</u> 27.9 nm

Aluminum (paint-coated)

18.5 nm

ABS-smooth

ABS-rough

Aluminum (native oxide)

93.4 nm

-98.1 nm

5.0 µm

130.0 nm

-119.2 nm

5.0 µm

70.2 nm

-62.6 nm

0.0

5.0 µm

Hamaker Constant Estimation – Simulator

Hamaker Constant Estimation – Surface Tension

 $W = -2\gamma$

Interaction energy between two planar surfaces (W), Hamaker constant (A), separation distance between the two surfaces (D)

The total interaction energy is twice the surface energy (γ)

 $A_{11} = 24\pi D^2 \gamma$

Solve for the Hamaker constant

 $D = D_0 \approx 0.165 \, nm$ Assume the closest separation distance is ~ 0.165 nm

 $A_{11} \approx 2.1 \times 10^{-21} \gamma$ A (J) estimated from γ (mJ m⁻²)

Hamaker Constants

Hamaker constants calculated from self-self interactions

Preliminary results based on 1200 simulated contacts between substrates and 5µm particle

Future Work

Future Work

Interactions between the binder, particles, and surface

Future Work

Discrete Element Method (DEM)

$$m\ddot{\mathbf{x}}_i = \sum_{j \neq i} \mathbf{f}_{j \to i}$$

Acknowledgements

The Beaudoin Bunch

Circled:

- Melissa Sweat
 - Dec. 2015
- Leonid Miroshnik
 - 2018/2019

Not pictured:

- Johanna Smith
 - Grad. May 2014
 - Employed at General Mills
- Chris Browne
 - Grad. May 2017
- Alyssa Bass
 - Grad. May 2017
- Hannah Burnau
 - Grad. H.S. May 2017

Top: Leonid Miroshnik, Sean Fronczak, Jenny Laster, Darby Hoss, Andrew Parker Bottom: Aaron Harrison, Caitlin Schram, Myles Thomas, Melissa Sweat, Jordan Thorpe

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. [10/2013]