Describing Roughness During Contact Sampling: Statistical Considerations for Swab Screening Explosive Particulates

Swab Sampling

Trace Explosive Sampling

$>$ Ion Mobility Spectrometer (IMS)
$>$ Trace particulates \sim order of $10^{-5} \mathrm{~m}(\sim 50 \mu \mathrm{~m})$
> Step 1 - Removal

Adhesion

Three Primary Intermolecular Forces

1. van der Waals (vdW)
2. Capillary
3. Electrostatic

Measuring Adhesion

Atomic Force Microscopy

Modeling Adhesion - Surface Roughness

Ideal

Reality

Surface Roughness

1. Decreases material in vdW contact
2. Increases variability of contact measurements

Distribution of Forces

Accounting for Surface Roughness

Modeling Adhesion of Rough Surfaces

$$
F_{\text {plates }}(z)=-\frac{A}{6 \pi z^{3}} \times \text { Area } \longrightarrow \quad F_{\text {total }}=-\sum_{i}^{n_{x}} \sum_{j}^{n_{y}} \frac{A}{6 \pi z_{i j}^{3}} \times \text { Area }_{i j}
$$

Statistical Considerations

Statistical Considerations

Substrates Considered

Increasing Roughness

Substrate	RMS	Pk-to-Pk
Silica	$0.63 \pm 0.2 \mathrm{~nm}$	$12.8 \pm 7.9 \mathrm{~nm}$
Stainless Steel	$7.4 \pm 1.9 \mathrm{~nm}$	$65.9 \pm 17.9 \mathrm{~nm}$
Teflon	$24.3 \pm 5.8 \mathrm{~nm}$	$181.2 \pm 52.7 \mathrm{~nm}$

Bootstrap Method

Statistical Results

Determine optimized number of samples required to fully characterize a substrate

$$
R E=\frac{1}{k} \sum_{i=1}^{k}\left|\frac{\bar{x}-\bar{x}_{i}}{\bar{x}}\right|
$$

Trace Explosives Application

Substrate Roughness Characteristics

Substrate	RMS	Pk-to-Pk
ABS-smooth $66.8 \pm 29.9 \mathrm{~nm}$ $459.8 \pm 134.4 \mathrm{~nm}$ ABS-rough $38.1 \pm 20.2 \mathrm{~nm}$ $288.6 \pm 129.8 \mathrm{~nm}$ Aluminum (native oxide) $60.8 \pm 13.1 \mathrm{~nm}$ $359.1 \pm 120.3 \mathrm{~nm}$ Aluminum (paint-coated) $3.6 \pm 0.6 \mathrm{~nm}$ $72.6 \pm 27.9 \mathrm{~nm}$${ }^{\text {Al }}$ (

ABS-smooth

ABS-rough

Aluminum (paint-coated)

Aluminum (native oxide)

Hamaker Constant Estimation - Simulator

$$
F_{\text {plates }}(z)=-\frac{A}{6 \pi z^{3}} \times[\text { Area }]
$$

A_{132} : The Hamaker constant between materials 1 and 2 interacting through medium 3

Material 3

Averaging Approximation
$A_{132} \approx\left(\sqrt{A_{11}}-\sqrt{A_{33}}\right)\left(\sqrt{A_{22}}-\sqrt{A_{33}}\right)$

Estimate A_{132} using silicon nitride tip experiments and contact simulator

Hamaker Constant Estimation - Surface Tension

$$
W=\frac{-A_{11}}{12 \pi D^{2}}
$$

$D=D_{0} \approx 0.165 \mathrm{~nm} \quad$ Assume the closest separation distance is $\sim 0.165 \mathrm{~nm}$
Interaction energy between two planar surfaces (W), Hamaker constant (A), separation distance between the two surfaces (D)

$$
W=-2 \gamma
$$

The total interaction energy is twice the surface energy (γ)

$$
A_{11}=24 \pi D^{2} \gamma
$$

$A_{11} \approx 2.1 \times 10^{-21} \gamma \quad A(J)$ estimated from $\gamma\left(\mathrm{mJ} \mathrm{m}^{-2}\right)$
Solve for the Hamaker constant

$\gamma_{S L}$

Hamaker Constants

Hamaker constants calculated from self-self interactions

Adhesion Force Predictions

Preliminary results based on 1200 simulated contacts between substrates and $5 \mu \mathrm{~m}$ particle

Future Work

Ideal particles on ideal surface

Rough particle on rough surface

Future Work

Interactions between the binder, particles, and surface

Future Work

Discrete Element Method (DEM)

$$
m \ddot{\mathbf{x}}_{i}=\sum_{j \neq i} \mathbf{f}_{j \rightarrow i}
$$

Acknowledgements

Circled:

- Melissa Sweat
- Dec. 2015
- Leonid Miroshnik
- 2018/2019

Not pictured:

- Johanna Smith
- Grad. May 2014
- Employed at General Mills
- Chris Browne
- Grad. May 2017
- Alyssa Bass
- Grad. May 2017
- Hannah Burnau
- Grad. H.S. May 2017

LJe Besnqoin Bnijej

Top: Leonid Miroshnik, Sean Fronczak, Jenny Laster, Darby Hoss, Andrew Parker Bottom: Aaron Harrison, Caitlin Schram, Myles Thomas, Melissa Sweat, Jordan Thorpe This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Office of University Programs, under Grant Award 2013-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as
necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. [10/2013]

