

Sequential Decision System Design

Kirill Trapeznikov, Venkatesh Saligrama, David Castañón

{ktrap,srv,dac}@bu.edu

Electrical and Computer Engineering, Boston University

restricted to binary setting

Alternating Minimization

- min $\tilde{R}_k(\cdot) \rightarrow$ series of supervised learning problems
- cyclical optimization of one stage k at a time
- surrogate loss: $\mathbb{1}_{[z]} \to \mathcal{L}[z]$
- smooth global objective ⇒ coordinate descent converges to a local minimum

Numerical Experiments

- Myopic: threshold margin of stage classifier to reject constant fraction
- Utility: threshold expected utility of stage classifier

Dataset	Size	Stage 1	Stage 2	Stage 3	Stage 4	# Classes	Target Error	Myopic	Ours	Utility
synthetic	4,000	Sensor 1	Sensor 2			2	.147	52%	28%	
pima	768	weight, age,	glucose test	insulin test		2	.245	41%	15%	
threat	1230	PMMW image	IR image	AMMW image		2	.16	89%	71%	
covertype	581012	soils	wild. areas	elev, aspect,		7	.285	79%	40%	
letter	20000	pixel counts	moments	edge feat's		26	.25	81%	51%	
mnist	70000	4 x 4 image	7 x 7	14 x 14	28 x 28	10	.085	90%	52%	
landsat	6435	Band 1	Band 2	Band 3	Band 4	7	.17	56%	31%	
mammogram	830	CAD feat's	expert rating			2	.173		25%	65%

Performance: % of the maximum budget required to achieve the target error rate

Target rate is chosen to be close to the error of the centralized strategy

 $\min_{f^1} \min_{f^2} \mathbf{E} \left[R(\cdot) \mid \mathbf{x} \right]$

Modified Stage Risk

$$\tilde{R}_k(\mathbf{x}^k, y, f^k, \tilde{\delta}^k) = \begin{cases} \tilde{\delta}^k(\mathbf{x}^k), & f^k(\mathbf{x}^k) = r \\ 1, & f^k(\mathbf{x}^k) \neq y \land f^k(\mathbf{x}^k) \neq r \end{cases}$$

 $f^{k} = \arg\min_{\ell} \mathbf{E} \left[\tilde{R}_{k}(\mathbf{x}^{k}, y, f, \tilde{\delta}^{k}) \mid \mathbf{x}^{k} \right] = \arg\min_{\ell} \mathbf{E} \left[R(\cdot) \mid \mathbf{x} \right]$

Given $\delta^k(\mathbf{x}^k)$: Multi-Stage Risk Minimization \rightarrow Single Stage

Stage-Wise Empirical Risk Minimization

$$\tilde{\delta}_i^{k-1} = S_i^k \tilde{R}_k(\mathbf{x}_i^k, y_i, f^k, \tilde{\delta}_i^k) + \delta^k, \ i = 1, 2, \dots N$$

Instead of learning $\tilde{\delta}^k(\mathbf{x}^k)$, use $\tilde{\delta}^k_i$ to learn decision boundaries directly

Empirical Risk Minimization for stage k:

$$f^{k}(\mathbf{x}^{k}) = \arg\min_{f \in \mathcal{F}^{k}} \frac{1}{N} \sum_{i=1}^{N} S_{i}^{k} \tilde{R}_{k}(y_{i}, \mathbf{x}_{i}^{k}, f, \tilde{\delta}_{i}^{k})$$

This material is based upon work supported by the U.S. Department of Homeland Security under Award Number 2008-ST-061-ED0001. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies.

Parameterization of Reject Option

Generalization

- Polynomial Kernel Classifiers: complexity is bounded $K \log K \times \text{most complex stage}$
- Boosted Classifiers: margin based bound for a two stage system

1.4 1.6 Budget

MNIST