
Sequential Decision System Design
Kirill Trapeznikov, Venkatesh Saligrama, David Castañón
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Objective
Discriminative learning framework for sequential

decision making under budget constraints

Error Budget Trade-off
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Sensors:
physical measurement in some modalities
or computing features of various complexity
feature=measurement (possibly high dimensional)

Typically: higher cost = more informative
Cost: resources, time, computation ...

Previous Work

Generative & Parametric Modeling
MDP [Ji and Carin, 2007, Kapoor and Horvitz, 2009]

Trees [Sheng and Ling, 2006, Bilgic and Getoor, 2007, Zubek and Dietterich, 2002],
Utility [Kanani and Melville, 2008]

estimate/model P(xk | xj)
not possible in our setting due to high dim.

Discriminative Methods
Detection Cascades: partial binary decisions
[Zhang and Zhang, 2010, Chen et al., 2012, Viola and Jones, 2001]

TEFE: myopic [Liu et al., 2008]

Reject Classification
[Chow, 1970, Yuan and Casasent, 2003, Bartlett and Wegkamp, 2008, Rodrı́guez-Dı́az and Castañón, 2009]

K. Trapeznikov, V. Saligrama, D. Castañón, Multi-Stage Classifier Design, ACML 2012

Multi-Stage Sequential Reject Classifier
Sample: x = [x1 x2 . . . xK ], True label: y ∈ {1,2, . . . ,C}
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Order of stages/sensors is fixed
k th stage:

f k (xk ): full decision with a reject option
acquires k th meas. for a cost δk
xk : first k meas. of x

System Risk

R(f 1, f 2, . . . , f K ,x, y) =
K∑

k=1

Sk (xk )︸ ︷︷ ︸
State Var.

Rk (xk , y , f k )︸ ︷︷ ︸
Stage Risk

Stage: Rk (xk , y , f k ) =

{
δk+1, f k (xk ) = reject
1, f k (xk ) 6= y ∧ f k (xk ) 6= reject

State: Sk (xk ) =

{
Sk−1(xk−1), f k (xk ) = rejects
0, else

, S0 = 1

Markov Decision Process (MDP)

Analyze MDP solution→ structure to aid in ERM

If P(x, y) known then objective:

min
f 1,f 2,...,f K

E [R(·) | x]

Solution through a Dynamic Program (DP) for f k (xk ):

δ̃
k (xk ) = min

f k+1,...,f K
E

[
K∑

t=k+1

St (xt )Rt (xt
, y, f t ) | xk

,Sk = 1

]
︸ ︷︷ ︸

expected risk of stages k + 1 . . .K

+ δk+1︸︷︷︸
meas.cost

0

1
P(y = 1 | xk)

�̃k(xk)

1 � �̃k(xk)

xk-1 reject +1

Modified Stage Risk

R̃k (xk , y , f k , δ̃k ) =

{
δ̃k (xk ), f k (xk ) = r
1, f k (xk ) 6= y ∧ f k (xk ) 6= r

f k = arg min
f

E
[
R̃k (xk , y , f , δ̃k ) | xk

]
= arg min

f
E [R(·) | x]

Given δk (xk ): Multi-Stage Risk Minimization→ Single Stage

Stage-Wise Empirical Risk Minimization
Training Data with full measurements:

[ ]..., , , ,

x1 y1 x2 y2 y3 yNx3 xN

Point-wise Cost-to-go Empirical Estimate:

δ̃k−1
i = Sk

i R̃k (xk
i , yi , f k , δ̃k

i ) + δk , i = 1,2, . . .N

Instead of learning δ̃k (xk ), use δ̃k
i to learn

decision boundaries directly

Empirical Risk Minimization for stage k :

f k (xk ) = arg min
f∈Fk

1
N

N∑
i=1

Sk
i R̃k (yi ,xk

i , f , δ̃
k
i )

Parameterization of Reject Option

f k (xk ) is a classifier with reject option→ reduce reject decision to supervised binary classification

Biased Classifiers
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f k (xk ) =

{
sgn
[
hk

p(xk )
]
, sgn

[
hk

p(xk )
]
= sgn

[
hk

n(xk )
]

reject, sgn
[
hk

p(xk )
]
6= sgn

[
hk

n(xk )
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R̃k (xk
i , yi ,hp,hn, δ̃

k
i ) = 1[hp(xk

i )yi≤0]1[hn(xk
i )yi≤0]︸ ︷︷ ︸

error penalty if not reject

+

δ̃k
i︸︷︷︸

cost-to-to

{
1[hp(xk

i )yi≤0] + 1[hn(xk
i )yi≤0] − 21[hp(xk

i )yi≤0]1[hn(xk
i )yi≤0]

}
︸ ︷︷ ︸

rejected

restricted to binary setting

Margin Based
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f k (xk ) =

{
sgn
[
hk (xk )

]
,
∣∣hk (xk )

∣∣ > gk (xk )

reject,
∣∣hk (xk )

∣∣ ≤ gk (xk )

R̃k (xk
i , yi ,hk ,gk ) = 1[h(xk

i )yi≤0]︸ ︷︷ ︸
error penalty

1[|h(xk
i )|>g(xk

i )]︸ ︷︷ ︸
not rejected

+ δ̃k
i︸︷︷︸

cost to go

1[|h(xk
i )|≤g(xk

i )]︸ ︷︷ ︸
rejected

extends to multi-class setting (MC to Binary)

Alternating Minimization

min R̃k (·)→ series of supervised learning problems
cyclical optimization of one stage k at a time
surrogate loss: 1[z] → L [z]
smooth global objective =⇒ coordinate descent
converges to a local minimum

Generalization
Polynomial Kernel Classifiers: complexity is bounded
K log K × most complex stage
Boosted Classifiers: margin based bound for a two
stage system

Numerical Experiments

Ours:
budget = 1.3, error = .148
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Myopic:
budget = 1.3 error = .19
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MNIST
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Myopic: threshold margin of stage classifier to reject constant fraction
Utility: threshold expected utility of stage classifier

Dataset Size Stage 1 Stage 2 Stage 3 Stage 4 # Classes Target Error Myopic Ours Utility
synthetic 4,000 Sensor 1 Sensor 2 .. .. 2 .147 52% 28%

pima 768 weight, age, .. glucose test insulin test .. 2 .245 41% 15%
threat 1230 PMMW image IR image AMMW image .. 2 .16 89% 71%

covertype 581012 soils wild. areas elev, aspect, .. .. 7 .285 79% 40%
letter 20000 pixel counts moments edge feat’s .. 26 .25 81% 51%
mnist 70000 4 x 4 image 7 x 7 14 x 14 28 x 28 10 .085 90% 52%

landsat 6435 Band 1 Band 2 Band 3 Band 4 7 .17 56% 31%
mammogram 830 CAD feat’s expert rating .. .. 2 .173 25% 65%

Performance: % of the maximum budget required to achieve the target error rate
Target rate is chosen to be close to the error of the centralized strategy


