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A Thermodynamic Sensor

« Our detection system employs a digital
B control system, which enables two
= Il microheaters to be scanned over a
h-lTH I | selected temperature range
= + One microheater is coated with a metal
oxide catalyst, which interacts with the
target molecule and results in the
catalytic decomposition of the
molecule: the measured heat effect

« The other microheater is not coated
and not responsive to the energetic
material (acts like a reference); thus,
sensible heat effects are subtracted
and only the heat effect associated with
catalytic decomposition is measured

/osemr | Flgxlech TN molex ENG @ fue July 8, 2020



How Our Sensor Works

Mass flow controllers deliver equal  Only the catalyst coatethicroheaterwill respond
quantitigs of target molec‘lles to both to the analytg the bare sensor will detect sensible

sensdbs. ® heat effects due to hydrodynamic effects and
v’ humidity and ce in electrical power to
maintain the same temperature is measured
Both heaters are Only one iS C()ated ‘ ‘
coated with an with a metal Qpde—
alumina dielectric. catalyst.

Twomicroheaters
with identical LIl
electrical
properties are
thermally isolated
In separate
~—" chambers. ~Both are’ hooked up to our data
acquisition system.




MMIE  Response of thermodynamic

| sensor to 20 ppm TATP
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The figure above shows a typical response curve for our thermodynamic sensor

platform
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= Aluminavs YSZ Microheater Comparison:

ENERGY SYSTEMS

| EEE

Rhode Tstand .
IR Analysis

Thin film microheater on Thin film microheater on
1mm thick alumina ultrathin YSZ substrate

substrate
Anisotropy , Lower Thermal Conductivity of YSZ Produces More Localized Heat
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= Alymina vs YSZ Microheater Comparison: (TN
Rhode Island .

IR Analysis
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it adill Cu Microheaters Fabricated on 5
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Ultrathin YSZ Substrates

40um YSZ 20um YSZ 12.5um YSZ Sum YSZ

8um Side View
Substrate Substrate Substrate Substrate
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Flexing due to
compressive
stress of the
catalyst layer

* The figures above show a series fully fabricated YSZ based microheaters on a variety
of thicknesses of YSZ substrate

* The 8um YSZ microheaters possess an overall thickness of ~11.5um at the serpentine

* Through continued reduction in thermal mass without a sacrifice in catalyst surface
area, further improved sensitivity and response time were expected
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Effect of Substrate Thickness on Sensor Z=sEm:=s

S aSurt Rhode Island
Response (20 ppm TATP)
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The figure above shows a comparison of the responses of four YSZ based microhea
of varying YSZ substrate thickness to 20ppm TATE (I75C)
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Pd Microheaters Fabricated on Ultrathin FTINJ
Khode land YSZ Substrates
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A Previous work [Chu et al.] has shown that the presence of Pd nanoparticles within a
metal oxide catalyst produce catalyst amplifying properties

A Nanocomposite catalysts fabricated with 12 wt.% Pd and 88 &h@ead to a
maximum in responsé_eft)

A Utilization of Pd as the microheater metallization is expected to display to produce
improved sensitivity and response time over previous iteratigright)
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Rhode Island heater sensor response (20 ppm TATP)
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A The figure above compares the responses of -##&skd microheater (blue) and a-Cu
based microheater (red) on 20um YSZ substrate to 20ppm TAFPLASC)

A The catalyst amplifying properties of the Pd microheater allow for improved
sensitivity and response time
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i Deposition conditions used to form 1IN
Rhodesand —— MICroheaters on ultrathin YSZ substrates
Power Requirement] { Sy & A (i N ZRespénse Time* Energy
(mW) (%) (s) ()
/| dz 6nn x|Y {320 4 _ 3.2
[ dz 6nHn x|Y |, {30 X 2.75 9 2.7
/| dz 0 MH ®p 245 3.2 8.5 2.08
/| dz 60y «xY ., { %215 5.2 6 1.29
% onn <IN - TN 40
tR oHn XY {380 8.5 5 1.65
tR OMH®p 280 10 4.5 1.26
tR o0y xVY . {¥a60 4 16.2 3 0.78

* Response time was arbitrarily determined to be the t10 time or time required to reach 10% of the overall response 3
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A Combination of thinner YSZ substrates anebBsed metallization has shown to
improvement in every category

A Minimize power requirementCu based microheater (8um YSZ)

A Maximize catalytic response/response tim®d based microheater (8um YSZ)
A Minimize energy requirementPd based microheater (8um YSZ)
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Sl BiPASS Concept TN

ENERGY SYSTEMSE

Thin, Flexible YSZ Ultra-Thin SSLB Cells/ URI Explosives Trace Detector
10-40 pm Thick

Self-Powered ETD Sensor
Stack on 20 um YSZ (ETD)/Gas Sensor on 20 um YSZ

A ITN has a Unique Sokfitate Lithium Battery (SSLB) with High Energy Density

I Individual Cells are Deposited on Thin YSZ and Vertically Stacked to Make a
Battery

A With Funding from the Flex Tech AlliaricéTN and Partners are Working to
Extend the Capability of Paper Thin, Flexible Electronics

I SoPDie Enables Additional Functions, i.e. Sensors/Sensor Systems ta K
Monolithically Integrated on Top of the Battery

I Combinations of Thin Film Devices, Printed Electronics, and-High
Performance Microelectronics
*Projects sponsored by thElexTechAlliance

Thin Flexible Power Source Based on SSLB (SeptF2Q18018)

Flexible Integrated Power Pack Integrating CdTe PV with SSLB (AugJ2012018)
Ultra-Thin, SeHPowered Sensors (Nov 2018ly 2020)
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Rhode and BiPASS Development

A ITN and URI Demonstrate ; c— Analyte Test Chamber
SeltPowered ETD , BV -
I ETD Sensor Was Optimi » =iy
for Low Power or Small | g2 4, 2 Pl i 78
Battery Integrated, Self-Powered
i Acetone Detection Ll e
A 25°C Operation i cififf‘éﬁfmt) T
A 70ppm |

I Breadboard Electronics

A Entire Assembly Could be
Paper Thin
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