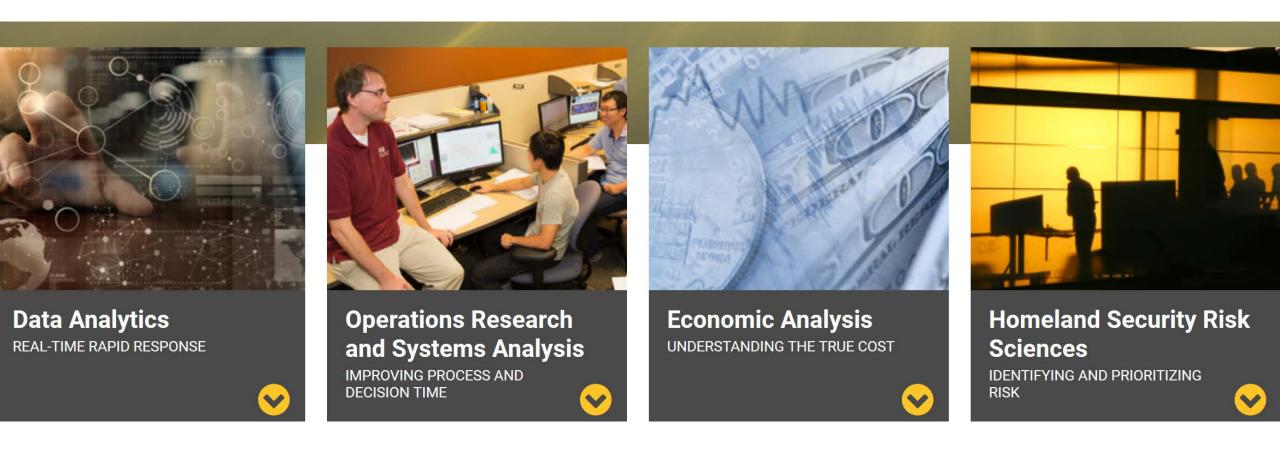
Strategies & Operations: Smarter, Faster, Cheaper

Eva K Lee

Virginia C. and Joseph C. Mello Chair and Professor


School of Industrial and Systems Engineering

Georgia Institute of Technology

eva.lee@gatech.edu

Research partially supported by the U.S. DHS S&T Center of Excellence

The Center that I belong to: DHS COE – CAOE Center for Accelerating Operational Efficiency

CAOE – Academic and Industry Partners

ACADEMIC PARTNERS

- Arizona State University (lead university)
- Georgia Institute of Technology
- North Carolina Agricultural & Technical State University
- Northwestern University
- Spelman College
- The University of Texas at El Paso
- University of Albany (SUNY)
- University of California at Irvine
- University of Chicago
- University of Maryland, START
- University of Southern California pyright Materials (c) Georgia Institute of Technology

INDUSTRY PARTNERS

- Skysong Innovations
- Georgia Tech Research Corporation (CTRC)
- Los Alamos National Laboratories (LANL)
- Maricopa County (AZ) Emergency Management Department
- Pacific Northwest National Laboratory (PNNL)
- Sandia National Laboratories

CAOE – Real World Impact

- Split-second decision-making
- Wise allocation of scarce resources
- Accurately predicting cascading consequences of natural and manmade disasters

CAOE research, systems and technology provide homeland security agencies with real-time information, predictive tools for resource and response planning, and systems that increase the odds of resolving security problems.

For Today's CBP Presentation

Disclaimer: The analysis and content presented today represents my own research efforts. It does not cover the vast scope and capabilities of the entire CAOE Center.

Challenges and Opportunities

CBP Mission

- Custom: Passengers, luggage at land entry, cargos at ports, agricultural
- Border patrol: illegal immigrants and cargos
- Air and marine operations: illegal entry by air and water (human, weapons, narcotics)

Analytics: Modeling and Computation

- **Risk Detection**: assessment, economic impact, tradeoffs, cascading effect, potential downstream terrorist risks.
- **Operations Efficiency**: safer, faster, more effective
- Agile Workforce: safer, improved morale, adaptable, quick strike

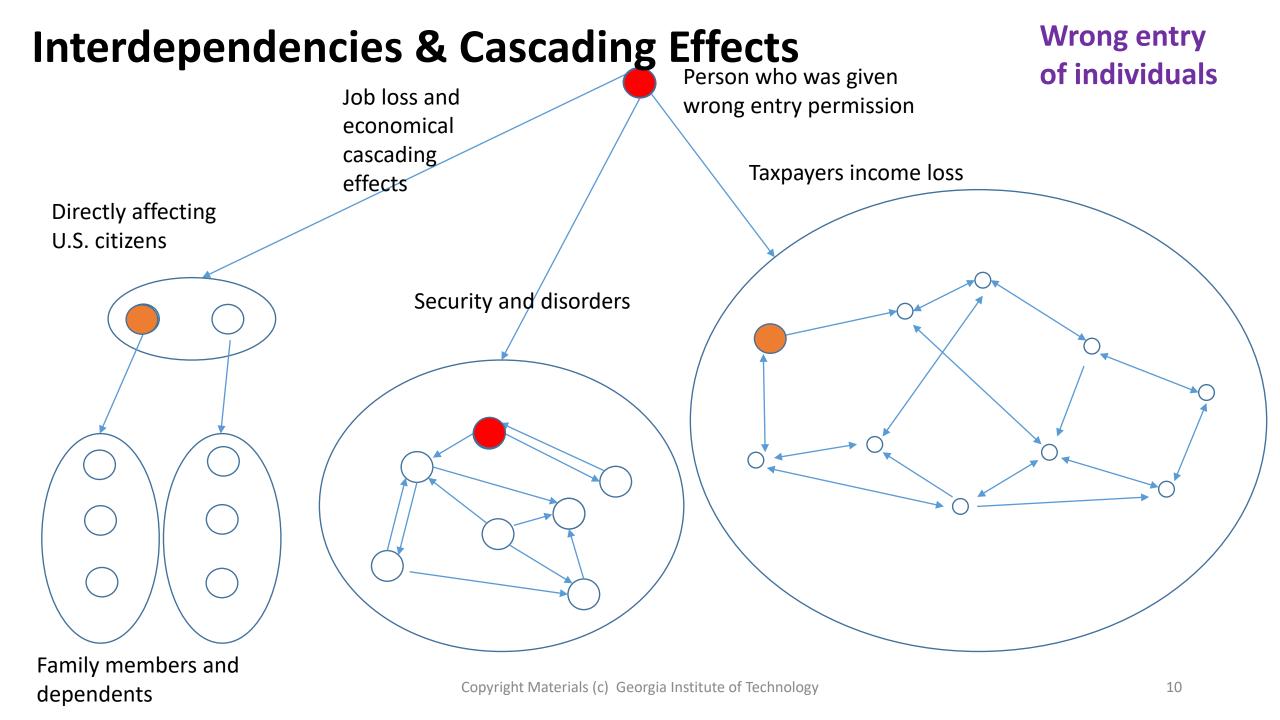
What We Can Offer

- Strategies, tactics, operations
- Risk assessment and safety
- Rapid disease modeling, assessment, and containment strategies
- Modeling of Human behavior and emotion, cognitive intelligence, environment (physical, cyber),
- Efficiency and resource allocation
- Risk-informed policies and decisions
- Adaptability and real-time capabilities

Three examples that we analyze in CBP context -

- I. Risk Assessment and Interdependencies
- II. Situation Awareness and Quick Response
- III. Operations Efficiency and Risk Reduction

I. Risk Assessment and Interdependencies

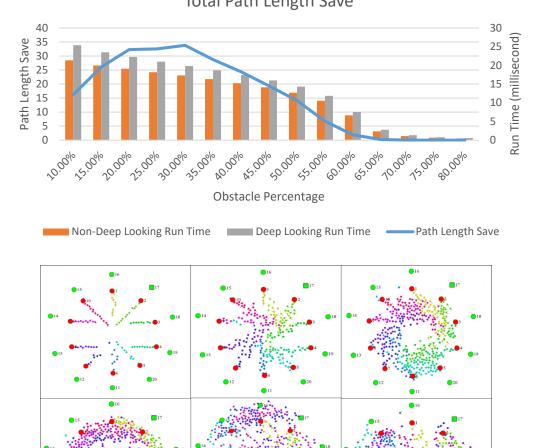

A scenario

- Customs
 - Cyber threat: The identification database might be tampered allowing "risky" people (could be identified by fingerprint or facial) access to the U.S.
 - Unsuccessful entry intention check: Short term visa holders with intention to stay in U.S. permanently are not identified
 - Unnatural actions at the border examination.
 - Excessive luggages.

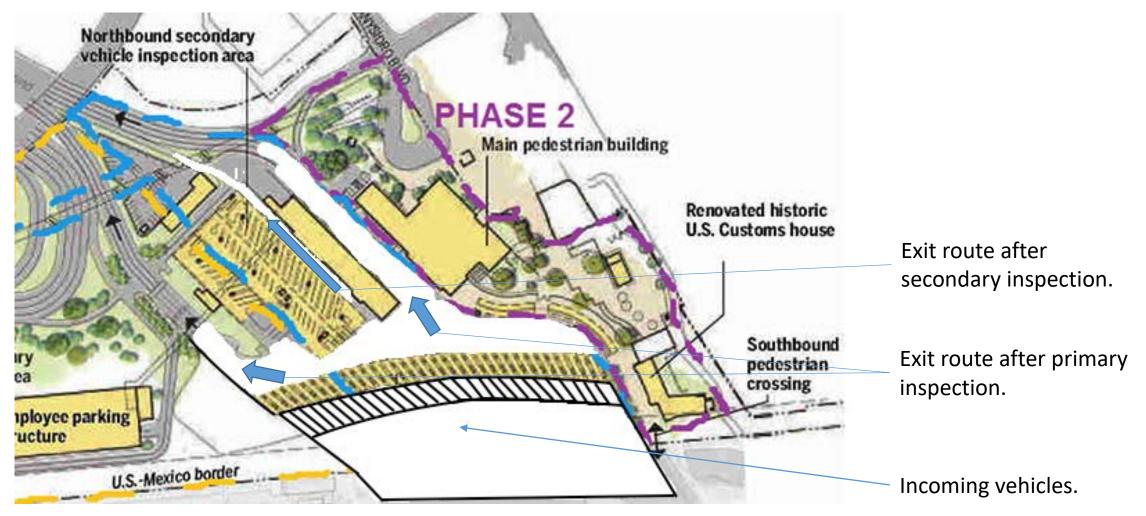
- Border patrol and air and marine operations
 - Unlawful entry to U.S.
 - Illegal immigrants.
 - Narcotics and other illegal substances.

A Scenario: Wrong entry permissions

- Wrong entry permissions could be given when:
 - Database is tampered that officers could not identify the people who had criminal records or proven to be harmful to the U.S.
 - Long-term stay intentions are not identified for short-term visa holders.
- Consequences
 - Safety of U.S. citizens is threatened.
 - Possible disorders, increase risks
 - Loss of working opportunities for U.S. citizens.
 - Family member and other dependents might be affected.
 - Unnecessary social welfare expenses paid by U.S. taxpayers.
 - Less disposable family disposable income.

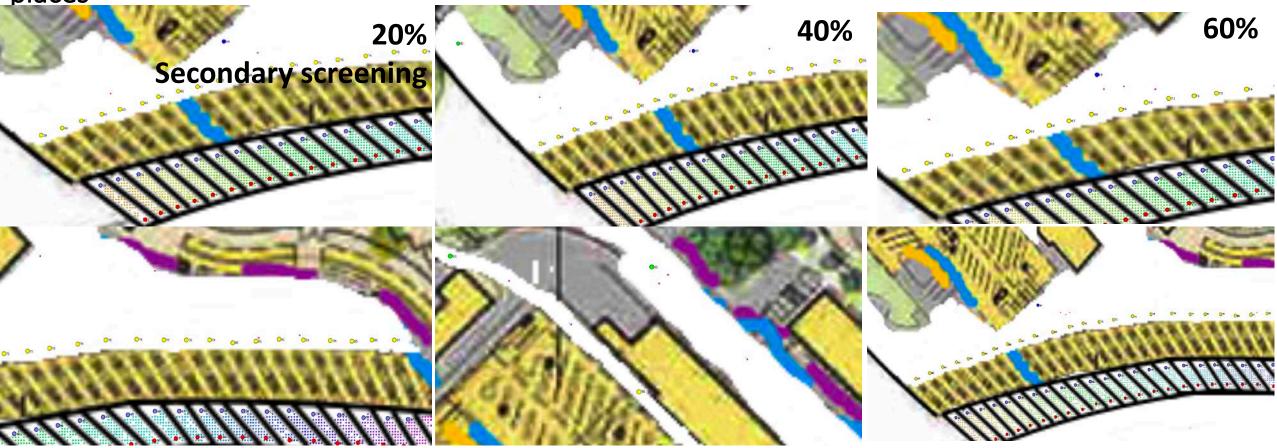


Illegal entry of Interdependencies & Cascading Effects food/drugs Wrong product entered through Job loss and inspection errors economical cascading Taxpayers income loss Directly affecting U.S. citizens effects Business/Commerce Inferior/unsafe products Security and disorders: Criminal activities Disease spread Illness, addiction Illegal/criminal drug activities/ Health security Family members and


Family members and dependents

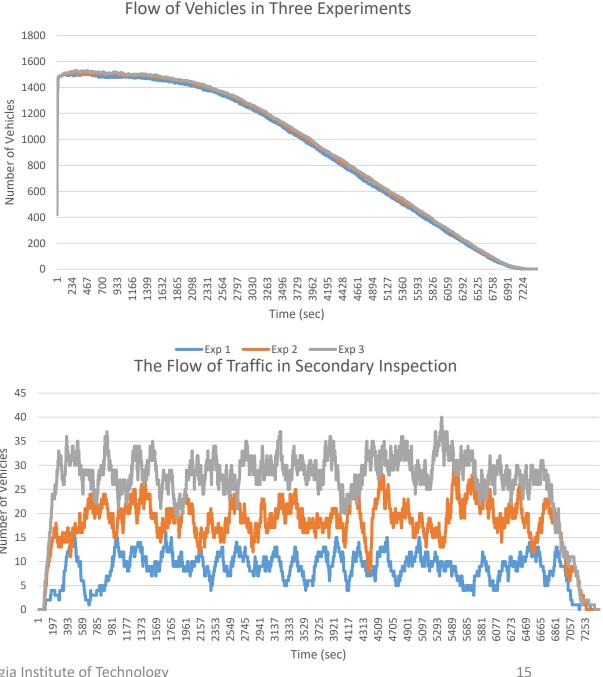
II. Situation Awareness & Quick Response Total Path Length Save

- Develop a multifunctional agent based simulation platform
- Incorporate logistics, operations, human behavior with emotion and information contagion
- Coupled with optimizer (deep learning, machine learning, & mathematical programming) to facilitate real-time response
- Model situation and operations for situation awareness and quick adaptive response


San Ysidro Handles ~54000 vehicles Daily

Real-Time Operations and Interventions

Congestions happen before Similar to 20% secondary entering the primary inspection screening places


Large flow of traffic are directed to secondary inspection.

Comparing Results

- Logistic flow can be maintained efficiently
- Traffic flow in secondary inspection station is different, primarily due to increased volume vehicles being inspected.
- Increase of secondary inspection could push the limit of resource to its extreme

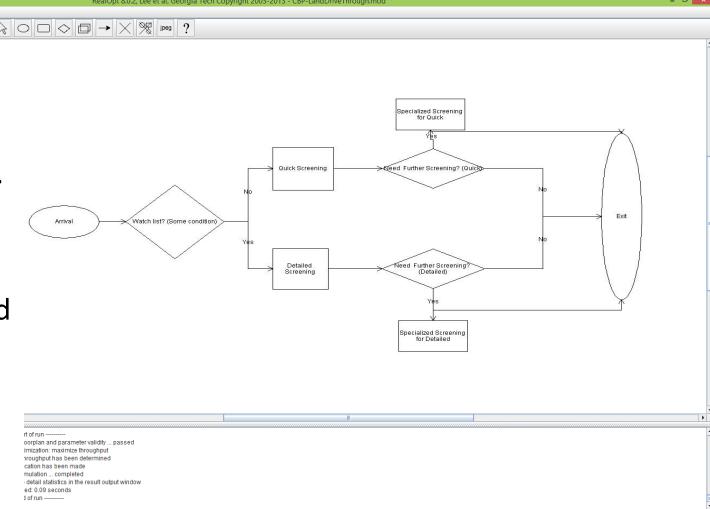
Optimize to handle larger volume and complex/intense tasks

Exp 2 — Exp 3

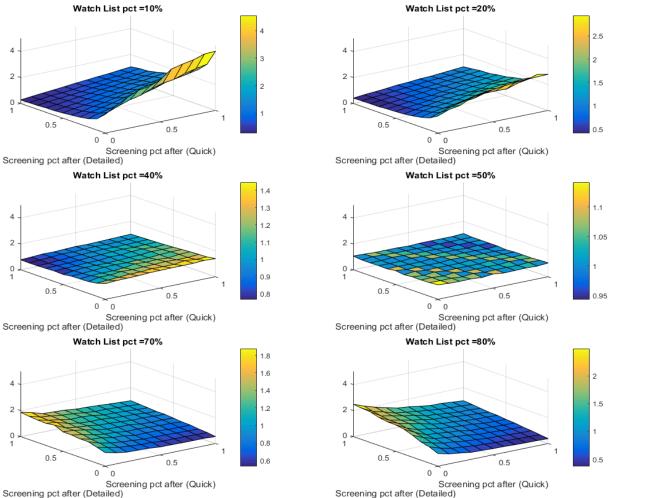
Number of Vehicles

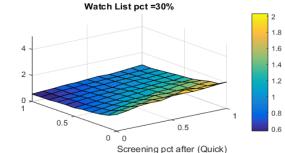
III. Operations Efficiency, Risk & Crowd Control

- Optimize systems performance: throughput, flow time, queue, wait-time
- Optimize resource allocation
- Control crowd & reduce risks (triage)
- Incorporate human behavior: operators service time, fatigue factor, emergency emotion; clients behavior, crowd emotion, uncertainties
- Real-time dynamic updates

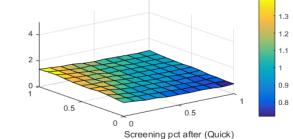

- Apply to CBP land border checkpoint (human/products/agri)
- Data/knowledge-driven risk-based screening

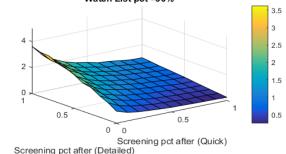
CBP Land Border Checkpoint


<u>\$</u>	RealOpt 8.0.2, Lee et al, Georgia Tech Copyright 2003-2013 - CBP-LandDriveThrough.mod	- 🗇 🗙
File Run Help		
Distributions Goodness-of-Fit Test	$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \rightarrow \times \bigotimes \bigcirc ? $	
Simulation Parameters Resource Groups		
Model type: O Clinic O Drive-through		
Dispense to: Individual 💌		
The program will return staffing needs/assignments		
per POD per shift		
Simulation time: 12.0 hour		
(number of hours per shift)		
Max extension for completion: 10 hour	Arrival CBP Check Point Need Further Screening? No Exit	
Max average flow time: 2.0 hour	Yes Yes	
Max avg. waiting at any service station: 1.0 hour	Detailed Screening	=
For minimizing resource allocation:		
Total Throughput Hourly Throughput		
Minimum required total throughput: 10000 Individual		
per POD per shift		
Calculation Box:		
Household Factor: 2.57		
individuals = households.		
Non-English Language Setting Show Panel		
Non-English Language Setting Show Paller		
Specify arrivals by		
Fatigue factor: 0 reserves per 0 assigned workers		_
		•
Enable disease propagation	Start of run	
	Checking floorplan and parameter validity passed	
	Starting optimization: maximize throughput Maximum throughput has been determined	
	Worker allocation has been made	
	Running simulation completed Please see detail statistics in the result output window	
	Time elapsed: 0.09 seconds	
	End of run	


CBP Land Border Checkpoint

- RealOpt 8.0.2, Lee et al, Georgia Tech Copyright 2003-2013 CBP-LandDriveT File Run Help Distributions Goodness-of-Fit Test $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \rightarrow \times \bigotimes \text{ ipeg } ?$ Simulation Parameters **Resource Groups** Model type: 🛛 Clinic 💿 Drive-through Dispense to: Individual 💌
- Risk-based screening
 - highly trusted or don't carry any suspicious items.
 - Leverage existing data to establish risk factors
 - Model combination screening technologies and optimize investments to provide optimal results
 - Model worst-case scenarios to optimize overall performance


Gain in Performance: Sensitivity Analysis


Screening pct after (Detailed)

Watch List pct =60%

Screening pct after (Screening pct after (Detailed)

Watch List pct =90%

Copyright Materials (c) Georgia Institute of Technology

Thank you

Preprint and discussion: <u>eva.lee@gatech.edu</u>