## Mono-energetic photon sources

#### **Photon source**

Cameron G.R. Geddes, cgrgeddes@lbl.gov

Hai-En Tsai, Sven Steinke, Jeroen van Tilborg,
Carlo Benedetti, Eric Esarey, Hann-Shin Mao,
Kei Nakamura, Tobias Ostermayr,
Carl B. Schroeder, Csaba Toth, Jean-Luc Vay,
Remi Lehe, Brian J. Quiter, Paul Barton,
Kai Vetter, Wim Leemans\*
Lawrence Berkeley National Laboratory
A BELLA Center director

David Grote, Alex Friedman

Lawrence Livermore National Laboratory

David Chichester
Idaho National Laboratory

#### **Applications**

Cameron G.R, Geddes, Bernhard Ludewigt, John Valentine, Brian J. Quiter,

Lawrence Berkeley National Laboratory

Marie-Anne Descalle
Lawrence Livermore National
Laboratory

Glen Warren
Pacific Northwest National Laboratory

Mathew Kinlaw
Idaho National Laboratory

Cameron Miller
U. Michigan, Ann Arbor

21 June 2018











# Improved container, rail, air cargo and vehicle scanning enabled by mono-energetic photon sources

- Application space: Screening of container, rail, and air cargo as well as vehicles
- Problem: Xray and CT material identification, resolution, and penetration currently limited
  - bremsstrahlung dose, energy & angle spread
- Solution: Photon source producing monoenergetic, narrow angle, pulsed beam
- Results: Mono-energetic source reduces dose 10-100x, improves discrimination ~10x
  - Present project: demonstrate path to compact system using plasma based accelerators
  - Path to applications: development of robust,
     kHz laser drivers and systems
- TRL: 3
- Contact: cgrgeddes@lbl.gov, 510-495-2923





# Laser-driven systems are shrinking rapidly Already at trailer scale, smaller systems in development

Lab experiments set needs:



COTS 10 TW, 10 Hz, trailer<sup>1</sup>



- 2 MeV concept fits 20' van
  - Smaller systems anticipated
  - kHz laser needed for applications



### One to two orders of magnitude improved dose and signal accessible with mono-energetic photon sources

Energy selection: enhance signal

- Radiography: maximize transmission and material contrast, reduce dose
  - Removes beam hardening



1: Final report of project "Impact of Monoenergetic Photon Sources on Nonproliferation Applications," C. Geddes, B. Ludewigt, J. Valentine, B. Quiter, M.-A. Descalle, G. Warren, M. Kinlaw, S. Thompson, D. Chichester, C. Miller, S. Pozzi (2017)

#### Related:

- S. Melton et al., 'Study of the Requirements for Monoenergetic Photon Sources,' DNDO report 2016.
- H. Martz et al., 'Poly- versus Monoenergetic Dual-spectrum Nonintrusive Inspection of Cargo Containers,' IEEE TNS 2017.

Joe Harms, PhD Dissertation Georgia Tech, 2018 (Erickson group).



mrad divergence:

also: EZ3D type methods

200

250

300

transmitted mrad beam:

ulation:hûahn@ontvlälst (U. Michigan)

Pulsed beam: 3D

Enable backscatter timing, 3D without tomography (INL)

micron emission spot:

Potential micron-scale resolution

NRF: enable specific detection based on atomic ratios with greatly reduced dose

**Photofission:** lower dose for Rad/Nuc

Enables precision measurements: Cargo, single sided detection cases simulated<sup>1</sup>

Dose reduced 10x-100x with energy control + narrow divergence Material discrimination improved 10x

Spatial resolution improved

NRF material identification and backscatter 3D enabled/improved

# Monoenergetic, narrow-angle, pulsed & small spot size photon sources offer new capabilities if compact

- Applications use bremsstrahlung due to size
- Thomson scattering a laser from an e-beam produces high performance photon sources
  - Low energy spread: enhanced signal, low dose
  - Tunable energy: material discrimination
  - mrad divergence: high contrast, low dose
  - Small spot, short duration: resolution & 3D
  - Adjustable per-shot: flux, energy, polarization
- Proven on large fixed science facilities
  - Size limits deployment: 0.5 GeV class accel.
- Laser plasma acceleration (LPA): GeV in cm (vs 10's of m): path to a compact system¹

e-beam Scatter Laser MeV Photons

<sup>1)</sup> W.P. Leemans and E.H. Esarey, "Laser-driven plasma-wave electron accelerators," Physics Today 62 (3), 44 (2009)

# Demonstration addresses key enabling techniques for a compact MPS in integrated experiment

Requirement & conventional limit

- High-energy, high quality e-beam at 0.2-0.6 GeV for MeV photons
  - Conventionally, long accelerator



Project: integrate solutions

- High quality cm-scale LPA
  - Meets photon source need

- High flux photon production from low scattering cross-section
  - Conventionally, requires very large accelerator current or laser



- Techniques to increase photon yield, reduce current/laser size
  - Diffraction: Guide scatter laser
  - Nonlinearity: shaped pulse

- Shielding increases with energy and current, limits source size
  - Conventionally, larger than accel.



- Deceleration of electrons by LPA: reduce beam dump size
  - Demonstrated in staged exp.

Current Project: Integrated prototype to demonstrate key per-shot elements

Newly constructed laboratory based 50 TW laser at 5Hz repetition rate

Provides test-bed for evaluations of application utility, signatures

## Photon source integrates past individual results New facility enables combined test

Controllable LPA at Photon-Source Energies
Up to 1 GeV in few-cm plasmas (for 20 MeV photons)



Electron Deceleration

Stage I: plasma lens

PM tape

PM

0.1 µm photon emission spot size fs-class short pulse

Plateau et al., PRL 2012. van Tilborg et al., PRL 2006. Photon source experiment running



Controlled Thomson Scatter Photon to produce 10%  $\Delta E$ , mrad



Capable of  $\leq$  1%  $\Delta$ E for NRF Geddes *et al.* NIM-B 2015

### kHz laser drivers are being developed to enable application-motivated scan rates

#### High peak power, low average power



High average power, low peak power



#### High average and peak power

Near term: kBELLA kHz, 3 Joule demonstrate photon source driver



Long term: Coherent combining of fiber lasers offers efficient path to 10's of kHz





#### Conclusion and future work

- Compact near-monoenergetic photon sources provide strong benefit
  - Moderate (10-30%) energy spread improves radiography and material discrimination, scalable to narrow (<1%) to enable/improve NRF</li>
  - mrad angular spreads mitigate scattering, improving contrast & dose
  - ≤µm emission spot very high spatial resolution
  - fs-class short pulse facilitates backscatter 3D methods
- Improved signal > 10x in many cases, with > 10x reduction in dose
  - Cargo, vehicle, pallet and other scanning and detection applications
- Compact source demonstration commissioned, in progress:
   control energy & energy spread, photon production, e- deceleration
  - Test applications/benefit: test cases & collaboration welcome
- Laser drivers are being developed to deliver ≥ kHz repetition rates motivated by applications

### Backup material

Primary references, available at <a href="http://geddes.lbl.gov">http://geddes.lbl.gov</a>

#### Survey of applications impact:

C.G.R. Geddes, B. Ludewigt, J. Valentine, B.J. Quiter, M.-A. Descalle, G. Warren, M. Kinlaw, S. Thompson, D. Chichester, C. Miller, S. Pozzi, "Impact of Monoenergetic Photon Sources on Nonproliferation Applications,"

[OSTI 1376659, INL/EXT--17-41137 (2017)]

#### Plans for development of the source:

C.G.R. Geddes, S. Rykovanov, N.H. Matlis, S. Steinke, J.-L. Vay, E. Esarey, B. Ludewigt, K. Nakamura, B.J. Quiter, C.B. Schroeder, C. Toth, W.P. Leemans, "Compact quasi-monoenergetic photon sources from laser-plasma accelerators for nuclear detection and characterization,"

[Nuclear Instruments and Methods in Physics Research B 350, 116 (2015). ]

### Backup slides – Photon Source

# Thomson/Compton photon sources require precise control of accelerator electron beam and scattering laser



Narrow  $\Delta E_{\gamma}$  requires high quality e-beam



- $\Delta E_{ph} \sim 10 \% \rightarrow \Delta E_{e} \sim 5\%$ ,  $\leq$  mrad
  - $\Delta E_{ph} \sim 2\% \rightarrow \Delta E_{e} \sim 1\%$ ,  $\leq 0.1 \text{ mrad}$

Low scattering cross section: quality & flux trade off



$$\frac{N_{\gamma_{\rm D}}}{N_e} \approx 4.7 \left(a_{0,max}\right) \sqrt{\frac{E_L}{\lambda_{L,\mu m}}}$$

1 ph/e- in 10%  $\Delta E_{ph}$ : 40J at  $a_0$ =0.3

Rykovanov et al., AAC 2012 & in prep., Chen et al., PR ST-AB 2013, Leemans et al. PRL 1996. Related include: Thomas et al PRST-AB 2010; Ghebregziabher PRSTAB 2013, P. Chen, et al., a, NIMA 355 (1995) 107. Hartemann PRE 54 (2956) 1996.

### LPA based Thomson photon sources Intensively developed worldwide

Selected highlights

#### United States

- U. Nebraska multi-MeV energies, energy control
- U.T. Austin back reflection, 0.2 MeV
- U. Michigan high brightness nonlinear at MeV
- LLNL high energy density physics applications
- LBNL facility for MeV + guiding and deceleration

#### Europe

- Jena LPA demonstration, theory
- LMU and MPI Garching keV energy spread control
- Helmholtz-Zentrum Dresden Rossendorf
- LOA foil back-reflection at 50 keV, control
- ELI Beamlines upcoming experiments

#### Asia

- SIOM-CAS MeV energy spread measurement
- KAERI, Korea experiment in progress
- AIST and U. Tokyo, Japan source control

UNL: Powers et al. Nat Phys 2013





# Photon source is part of BELLA Center, driving LPA technology for high energy physics and applications

Exisiting and planned laser facilities in Building 71 at LBNL



# Plasma wave driven by radiation pressure of TW, fs laser GeV/cm gradients: compact accelerator for Thomson sources







1: W.P. Leemans, Phys. Plasmas 1998, 2: C. Geddes et al., Nature 2004. 3: W.P. Leemans et al., PRL 2014, 4: S. Steinke et al., Nature 2016

# Recent GeV-class LPA development demonstrates high quality beams needed for 1-9 MeV photon sources

Electrons to 250 MeV using 0.5J/10TW + laser phase front control



ε~0.1μm via Betatron emission



 $\Delta E_e$  < 1.4 % FWHM from Colliding pulse injection control



Tunable 0.5 GeV - modulated density



# Integrated experiment to demonstrate, laser-plasma driven, compact photon system concept

#### Build and test concept for a compact source & system

- Electron beam produced by compact cm-scale laser plasma accelerator (LPA)
- Produce 1-9 MeV photons
- Increase photon production: control scattering laser length & focusing
- Reduce shielding: decelerate electrons after scattering



## LPA experiment running to prepare for laser-plasma driven, compact photon source work

Laser operating at 0.6J/42fs; 3J amp ready





Time (fs)

0



LPA running, photon experiment ready



Solid current: Drive Scatter Probe

Dashed: future second amplifier array for scatter laser



First electron beams produced

240





## Simulations show that narrow energy spread photon sources are enabled by high performance LPAs

 $\Box \Delta E_{ph}$  limited by electron quality:  $div_e$ ,  $\Delta E_e$ 

#### Demonstrated LPAs allow $\Delta E_{ph} \sim 10\%$

- E<sub>ph</sub> of 1-10 MeV
- Electron emittance dominates ΔE<sub>ph</sub>
- Divergence still dominant for scatter in plasma
- •Scattering laser control separate from LPA laser required for high photon yield/low  $\Delta E_{ph}$ 
  - Low amplitude to avoid nonlinearity
  - ~1-10 ps >> LPA driver duration for~ 1 photon/e-

#### Demonstrated 1% $\Delta E_e$ allows $\Delta E_{ph}$ ~2 %

- Experiments indicate potential for <1%</li>
- e-beam refocusing or emittance reduction required to reduce divergence

10-20%  $\Delta E_{ph}$  simulated from direct in-plasma scattering 0.2 GeV LPA VDSR Simulation 0.5 GeV LPA VDSR Simulation 0.5  $E_{photon, 1\omega}$  [MeV] 1 2.3  $E_{photon, 1\omega}$  [MeV] 2 4.6  $E_{photon, 2\omega}$  [MeV] 13

## Percent-level $\Delta E_{ph}$ with divergence control



Rykovanov et al., J. Phys. B 2014, Chen et al., PR ST-AB 2013, Leemans et al. PRL 1996. Related A.G.R. Thomas et al PRST-AB 2010 ( U. Michigan); Ghebregziabher PRSTAB 2013 (UNL) P. Chen, et al., a, NIMA 355 (1995) 107. (CAIN code)

# Simulations show high photon yield with realistic scattering laser & e- current by controlling scattering laser

Issue: large laser spot, high energy typically required for ps scatter laser

- Wastes energy, requires larger laser
- •Reduce scatter laser energy: guiding<sup>1,2</sup>
  - Mitigates diffraction, lengthens scattering
- •10<sup>8</sup> ph/shot possible w/ scatter energy ~LPA driver, in range of applications

Requirement: separately controlled scattering laser pulse, E<sub>scatter</sub>~Joule

Further improvement: Laser shaping<sup>3</sup>

Mitigates nonlinearity, intense scattering

Guiding increases focused propagation length: > 10 Z<sub>R</sub> routine<sup>2</sup>



40J Unguided 1J Guided w=6um  $^{3}$  5ph/e- at  $a_0$ =0.15

Simulations indicate minimal broadening



<sup>1:</sup> many experiments, including Durfee PRL 1993, Butler PRL 2002, Geddes PRL 2005, Leemans Nat. Phys 2006.

<sup>2 ;</sup>Rykovanov, J. Phys. B 2014

<sup>3:</sup> Harteman PRE1996, Ghebregziabher et al., Phys. Rev.ST-AB16, 2013, Rykovanov et al., PRSTAB 2016

### Backup slides – Mono-energetic photon applications

# Monoenergetic photon sources could enhance radiography, fission signatures, NRF

#### Radiography:

 Energy selection for maximizing transmission and Z-contrast, minimizing dose

Energy & Z Dependence of Mass Attenuation



#### Photofission:

 Energy selection to maximize fission signatures



■ Nuclear Resonance Fluorescence: narrow line → low energy spread / high spectral density greatly improve signal to noise

# Quasi- monoenergetic photons at ~10% $\Delta$ E improve radiography and material discrimination

- Application survey<sup>1</sup> shows high potential impact, including:
  - Screening & Inspection (Cargo)
  - Resolution of different materials
  - Penetration of thick targets
  - High resolution radiography of fine features
- Controlling photon energy improves signal
  - Mitigate contrast degradation by scattering/hardening
  - Remove low energy photons:
     reduce dose 3x-4x
  - Multiple energies: improve material discrimination

Bremsstrahlung sources- limited resolution CAARS radiography/Z: U sphere in Pb & Lexan





MPS dual energy ratio increases contrast Energy spread at 20% level<sup>1</sup>



## Narrow-angle beams further improve mono-energetic photon applications

- milliradian (mrad) divergence 'pencil beam' isolates scattering-induced degradation
  - Improves contrast, resolution
  - Allows dose targeting
  - Dose reduced 1-2 orders
  - Clear signal through thick objects
- dual-E ratio for distinguishing materials improved >10x
- Requires high pulse rate and scanning of beam
  - Example: container scan at 80cm/sec, 1cm res. =20kHz
  - 20-40cm steel:10<sup>6</sup> 10<sup>8</sup>ph/pulse in mrad cone

mrad divergence: improved contrast & lower dose by mitigating scattter



#### Improved Z

| •                         |                    |
|---------------------------|--------------------|
| Type & Energies           | Ratio              |
| Brems: Fe<br>9MeV/6MeV    | 1.57               |
| Brems: Fe+Pb<br>9MeV/6MeV | 1.61               |
| MPS: Fe<br>9MeV/3MeV      | 2.87<br><b>41%</b> |
| MPS: Fe+Pb<br>9MeV/3MeV   | 2.04               |

#### Scanned pencil beam concept



# Screening and interdiction alarm resolution: Reduced photofission dose, NRF enabled

- Pencil beam of ≤3 mrad important to isolate dose to area of interest
- Photofission:
  - MPS dose per fission ~50x lower than bremsstrahlung dose near 10 MeV
  - Detection of 2 kg HEU shielded by 20-30 cm thick steel box in seconds
    - KHZ MPS of a few  $10^{11}$ ph/second in few mrad divergence at  $\Delta E_{ph} \sim 20\%$

- NRF: isotope specific, SNM and non-SNM
  - Enabled at ΔE<sub>ph</sub> at or below 2% range
  - Examples for HEU detection (6-σ) with backscatter in <100 seconds:
    - 0.65 kg HEU sphere centered in filled container (0.6 g/cc)
    - ~2 kg HEU in Fe box with 10 cm thick walls
    - MPS:  $3x10^7$  photons/pulse, 20 kHz or ~  $1.7x10^7$  ph/eV/s at 1.733 MeV
- Improved signal vs. active and passive backgrounds

### Low-Z material identification for cargo/IEDs

- Address a key CBP priority on contraband and explosives
- NRF: High explosive measurement via atomic ratios of C, O, N
  - MPS advantage increases at high energies (O: 7 MeV)
  - Presently simulating Treaty/Dismantlement only
  - Cargo scenarios require consideration of larger volumes and shielding thickness
- Photoneutron spectroscopy
  - Monoenergetic photons produce neutrons at isotope specific energies via  $(\gamma,n)$  reactions  $(^{14}N(\gamma,n)^{13}N)$
  - Percent-level photon energy spread
  - High resolution, high rate detector required
- Use radiograph/Z<sub>eff</sub> information to localize volume for interrogation



NRF spectra for a simulant explosive, melamine and water; 8.3 MeV bremsstrahlung.
Reproduced from Bertozzi et al. 261: 1-2, 331-336
NIMB 2007

<sup>\*</sup>J.E. McFee et al., Nuclear Instruments and Methods in Physics Research A704 (2013) 131–139.

# Narrow energy spread, small emission spots, further extend capability

- Emission spot size drives spatial resolution improvement
- Nuclear Resonance
   Fluorescence<sup>1</sup>: enable high specificity identification of
   explosives, contraband and
   other materials
  - Lines 2 -10 MeV
  - ΔE<sub>photon</sub>≤2% enables signal; strong benefit if lower
  - Dose reduced orders of magnitude
  - Very low ΔE<sub>photon</sub> may enable isotopic/enrichment image

#### ≤ micron emission spot: resolution



Simulation: Glen Warren (PNNL)

## NRF: Reduce time to detect ~80x Cargo relevant objects in minutes

| G                       |              |                   |             |
|-------------------------|--------------|-------------------|-------------|
| 10                      | #5           | #8                | #10         |
| Isotope                 | 235 <b>U</b> | <sup>239</sup> Pu | 12 <b>C</b> |
| Time-to-Detection [min] |              |                   |             |
| MPS-scattering          | 8            | 13                | 1           |
| MPS-transmission        | 3            | 160               | 2           |
| Brems-scattering        | 640          | 940               | 3           |
| Brems-transmission      | 690          | 530               | 2           |

Simulation: Glen Warren, PNNL

### Pulsed, polarized beams enable novel signatures Access to 3D information, isotopics, and more

- Pulsed, narrow-angle 'pencil' beam enables 3D resolution
  - Backscatter to date limited by brems. pulse structure & broad energy spread
  - Thomson scattering: pulsed pencil beam would enable high resolution enhance other 3D methods such as EZ3D (Passport)

J. Callerame, AS&E, Advances in X-ray Analysis, Volume 49, 2006 M. Kinlaw et al. INL

Polarized photon beam: photo-fission signal in and out of plane reveals isotope ratios



J. M. Mueller et al., Nuclear Instruments and Methods in Physics Research A 776 (2015)