Zero-Power Sensors for Border Protection

Dr. Zhenyun Qian Research Assistant Professor

Department of Electrical and Computer Engineering
Northeastern University
Boston, MA 02115, USA

July 18, 2019

So What? Who Cares?

- Space: Human, vehicle & fire detection
- <u>Problem</u>: Limited assess to electrical power prevents high granularity detection
- Solution: Eliminate standby power consumption
- Results: Detect human ~1 m away, detect hydrocarbon fire ~50 m away, standby power consumption < 10 nW
- TRL: 3 for people & vehicle detection,
 4 for fire detection
- <u>Contact</u>: Prof. Zhenyun Qian <u>qian@ece.neu.edu</u>
 Prof. Matteo Rinaldi <u>rinaldi@ece.neu.edu</u>

Border Protection Relies on Sensors

Arizona Border

Mobile Surveillance Truck

- 80 feet tall (~24 m)
- Radar
- Visible-light cameras
- Infrared cameras
- Wireless communication
- Solar-powered w/ generator backup
- 52 Towers
- 49 Trucks
- >600 Unattended Ground Sensors

Rugged terrain and dense ground cover create blind spots

Demands and Dilemma on Sensors

- Detect all entering threats without being affected by blind spots created by man-made and natural occurring obstacles
- Discriminate between human, animal, and vehicle targets in all terrains,
 landscapes, and weather conditions present where USBP conducts operations.
- Scalable and deployable across all environments throughout the Southwest Border and Northern Border

Battery replacement costs are unsustainable for many sensors in challenging environments!

Source: DARPA N-ZERO & DHS/CBP 2017 RFI - Linear Ground Detection System

Sensing Without Using Power

Z. Qian, et al., Nature Nano., vol.12 pp. 969–973 (2017)

A micromechanical photoswitch that can harvest energy from specific infrared radiations to implement abrupt ON/OFF switching without using any electrical power

Why Infrared?

Warm objects radiate infrared in different spectral bands ("colors")

Achieve high selectivity through passive spectrum analysis:

Experimental Results

Dual folded-beams for compensation

- ❖ Zero leakage (< 5 fA at 20 V bias)</p>
- ♦ ON/OFF conductance ratio >1×10¹²
- ❖ Ultra-low detection threshold: ~100 nW
- High reliability: >8000 consecutive cycles without failure
- ❖ Wide spectral tuning range: 3-8 µm & LWIR

Experimental Results

Current in Photoswitch

Current drawn by the entire sensor node

- Standby power consumption: ~2.6 nW
- >3 order of magnitude better than state-of-the-art motion sensors
- >6 order of magnitude better than state-of-the-art flame detectors

Towards Border Protection

Focus on human detection

Case study: available IR power from human body to drive the ZIR sensors

Tool: Commercial thermal detector with active area of Φ 10 mm (3489x larger than our sensor)

Measurement	Front Facing	Side Facing	Top Facing
Power @ 0.5m (1.6 ft)	~ 440 μW	~ 330 μW	~ 203 μW
Power @ 1m (3.3 ft)	~ 220 μW	~ 158 μW	~ 50 μW
Power @ 2m (6.6 ft)	~ 65 μW	~ 45 μW	~ 22 μW
Power density @ 1m	2.8 W/m ²	2.0 W/m ²	0.64 W/m ²
Power delivered to 150x150 µm² device	63 nW	45 nW	14 nW

Study the effect from sunlight

 Extend detection range by using IR lens

Perform R&D to reduce technical risks

- Design and fabricate optimized IR sensor with threshold < 50 nW
- Design and test IR Fresnel lens (10 m detection range)
- Reliability test and design optimization
- Demonstration of a working prototype in lab environment (TRL 4)

Acknowledgment

Prof. Matteo Rinaldi

Sungho Kang

Antea Risso

Sila D. Calisgan

