Analysis of Radiographic Images to Improve Radiological/Nuclear Threat Detection in Commercial Cargo

and Experiences Working with DHS/CBP

Brian S. Henderson (bhender1@mit.edu)

July 18, 2019

CBP-ADEPT Workshop 2

LABORATORY FOR NUCLEAR SECURITY AND POLICY

SWWC

- Space: Nuclear/radiological detection (SNM and RDDs) in commercial cargo
- Problems: High cost of effective systems, poor overlap with other CBP missions, high false alarm rates
- Solution: Better utilization of general purpose radiography systems in conjunction with passive detection by leveraging existing radiography data to characterize cargo streams
- Results: Data analysis shows very high probability of detection of large class of nuclear/radiological threats at false positive rates of ~2%
- 6 DoD TRL: Analysis/technique at TRL 2, but utilizes TRL 8/9 hardware
- 6 Contact Information: bhender1@mit.edu

Current Approaches to Nuclear Cargo Security

• Passive techniques

- Simple, low-cost
- Specific to nuclear material

Image Source: NNSA, Nevada Site Office Photo Library

Current Approaches to Nuclear Cargo Security

Passive techniques

- Simple, low-cost
- Specific to nuclear material

Bremsstrahlung radiography

- More expensive in both time and money
- Much more general

Image Source: Varian Medical Systems

Current Approaches to Nuclear Cargo Security

Passive techniques

- Simple, low-cost
- Specific to nuclear material

Bremsstrahlung radiography

- More expensive in both time and money
- Much more general

Active interrogation

- Typically specific to nuclear material, very high cost
- Remains very much "on the drawing board"

Image Source: P.B. Rose, et al., Scientific Reports 6, 24388 (2016)

- Speed: Must process a container in $\lesssim 1$ minute
- Material sensitivity: In some way, must be sensitive to nuclear and radiological material
- Low false alarm rate: False positives are a key complaint of port operators
- **Easy Operation:** System must be reliable, have a small footprint, and produce easy-to-understand alarms
- Ideally overlaps with other missions: Contraband/tax evasion detection, stowaways (both detection and dose safety)

Essential Approach

- This is the first analysis of a significant set of radiographic images of cargo containers to assess the frequency of objects appearing similar to shielded nuclear/radiological threats
- Utilizes a set of 120,000 images of 20 and 40 foot container images taken with a Rapiscan Eagle 6 MeV bremsstrahlung rail scanner at the Port of Rotterdam
- Essential approach:
 - Model the appearance of relevant nuclear/radiological threats in radiographs, characterized by their apparent size/areal density
 - Determine the frequency of objects of the relevant sizes/densities in the container stream (which amounts to a false alarm rate using this technique in isolation)

Some Sample Threats to Consider

Consider the effective radius at thickness greater than 25 cm steel equivalent of a few example objects

- Bare U critical mass \sim 7.5 cm
- Assembled fission weapon $\sim\!12$ cm
- U pit shielded with 3 cm Pb on all sides $\sim\!10$ cm
- Pu pit fully shielded against neutron detection $\gtrsim\!\!40~\text{cm}$

Image Source: Fetter, et al., Science & Global Security 1, 225 (1990) (TOP)

Brian S. Henderson (MIT)

LABORATORY FOR NUCLEAR SECURITY AND POLICY

Simulated Pu Device in a Container Image

LABORATORY FOR NUCLEAR SECURITY AND POLICY

Density Distribution of Cargo

Characterization of cargo stream properties at fine scale

Largest Object (by Radius) per 20-ft Container

Effective false positive rate using this technique in isolation

Image Analysis Conclusions

- This analysis shows that objects that appear like nuclear weapons occur in ${\lesssim}2\%$ of containers, several percent for other threat classes
- There is much to be learned by digging into this data and there may be a significant opportunity to improve nuclear/radiological threat detection and inform other missions
- Analysis of other data streams is critical, along with fusion of multiple data sources for containers
- CBP/DHS should seek to promote analyses of large data sets, and facilitate fusion of multiple sources. Much can be gained with little or no development of novel technology/hardware

Upcoming Publication of This Work

Henderson, B. S. "Analysis of the Frequency and Detectability of Objects Resembling Nuclear/Radiological Threats in Commercial Cargo", **In press**. (*Science and Global Security*) (2018). Pre-print: arXiv:1901.03753.

Unless otherwise noted on the slide, all images in this presentation are from this work.

Related Machine-Learning Work Using Same Data for Other Customs/Security Goals

N. Jaccard, T. W. Rogers, and L. D. Griffin, in 2014 11th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS) (2014) pp. 387–392.

Extra Slides

§1701. Container Scanning and Seals

IN GENERAL.—A container that was loaded on a vessel in a foreign port shall not enter the United States (either directly or via a foreign port) unless the container was scanned by nonintrusive imaging equipment and radiation detection equipment at a foreign port before it was loaded on a vessel.

Mandated for implementation in 2012, delayed 4 times since then, and no plan exists for meeting the next deadline in 2020

Current Procedure at US Ports

Brian S. Henderson (MIT)

July 18, 2019 14 / 11

Image Source: Descalle, et al. Analysis of Recent Manifests for Goods Imported through US Ports, UCRL-TR-225708.

Brian S. Henderson (MIT)

July 18, 2019 15 / 11

- $\bullet~\sim\!120,\!000$ images of 20 and 40 ft containers
- Dual energy 4 and 6 MeV bremsstrahlung beam
- 4×4 mm pixel size
- Penetration up to 30 cm steel equivalent
- 16-bit integrated transmittance measurement per pixel
- \sim 20% empty containers

The Rapiscan R60 Rail Scanner in Rotterdam

Image Source: Rapiscan Systems

Typical Container Image

Largest Object (by Radius) per 40-ft Container

Largest Object (by Area) per 20-ft Container

Largest Object (by Area) per 40-ft Container

Mean Cargo Thickness Along Container Length

Mean Cargo Thickness Along Container Height

Data-Driven Single Pixel Uncertainty Estimate

