
Automatic Prohibited and Illicit Item Detection in X-ray and Computed Tomography Security Screening – a research snapshot

Toby P. Breckon

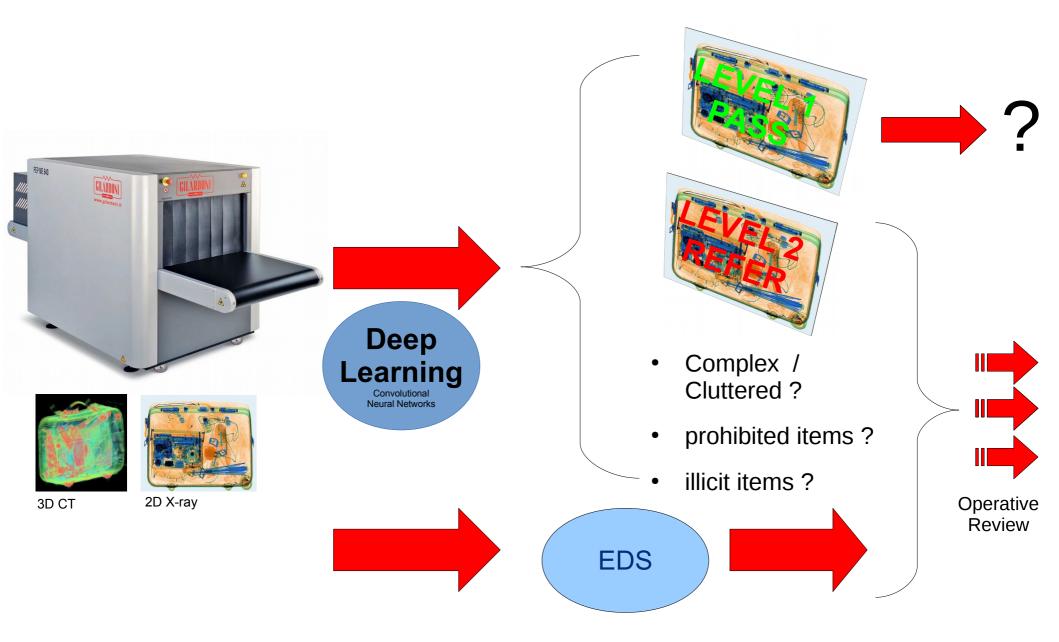
PhD CEng CSci FBCS FRPS FIET ASIS

Professor – Computer Vision and Image Processing

Engineering & Computer Science Durham University, Durham, UK

toby.breckon@durham.ac.uk / +44 191 334 2396

July 2019 - CBP-ADEPT-02 (rev. 02)


So What? / Who Cares?

- Space: Baggage & Parcel Inspection (carry on and hold, extensible to freight)
- Problem:
 - Prohibited Item Detection (by shape/material ... guns / knives / other ?)
 - Anomalous Item Detection (by knowing what is abnormal ?)
- Solution:
 - 3rd party, world-leading automatic object detection & classification algorithms
 - using 2nd / 3rd generation deep learning techniques

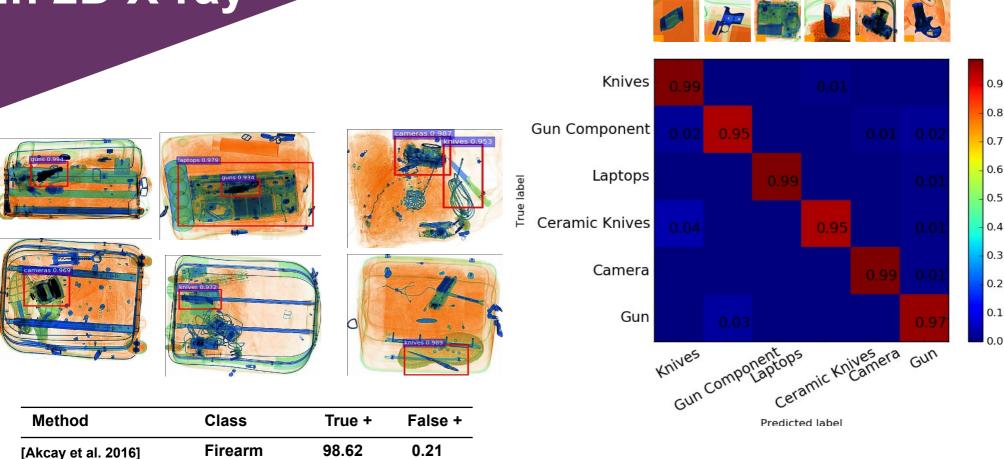
- Results: ~98%+, < 1 sec., FP <1%, invariant (on firearms detection, > 95% for other)
- TRL: 6
- Contact me: toby.breckon@durham.ac.uk

Concept of Operation

Durham

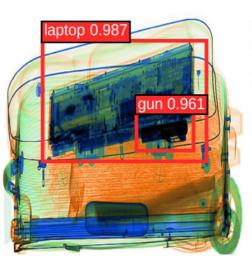
- 3rd oldest university in England (1832)
- World leading university (top 100)
- UK ranking: top 5
 Engineering & Computer Science
- Engineering & Computer Science
 - Nvidia Research Centre
 - Intel Parallel Computing Centre

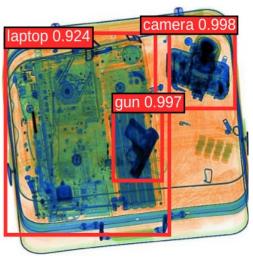
- Within X-ray Security:
 - 12 years experience
 - threat detection, threat image projection, anomaly detection

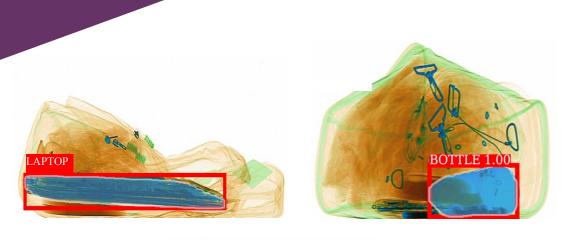


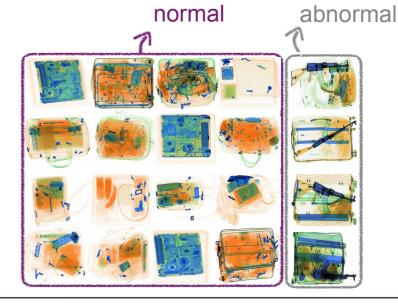
Deep Learning for Object Detection in 2D X-ray




- 1st generation deep net approaches
 - 95% (True+) over 6 object categories
 - established X-ray training via transfer learning (which everyone uses now) [Akcay et al. 2016]

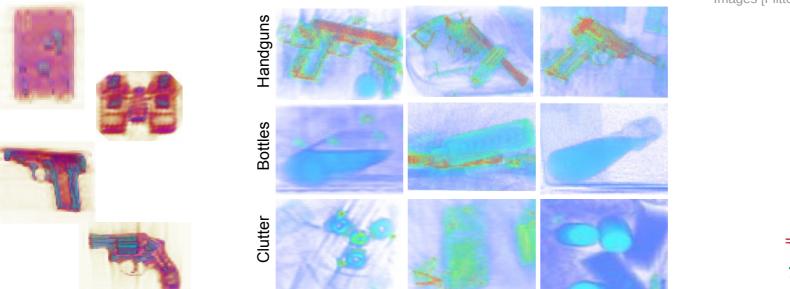

Deep Learning for Object Detection in 2D X-ray




Method	Class	True +	False +
[Akcay et al. 2017 / 2018]	Firearm	99.5+	< 0.5

- 2nd generation deep net approaches
 - high PD (true+), low PFA (false+) [Akcay et al. 2017]
 - leading global results; UK government test dataset [Akcay et al. 2018]

Deep Learning for Anomaly Detection in 2D X-ray


		1	
LAPTO	OP 1.00	14 10	
	Colone II		
	TO SE		

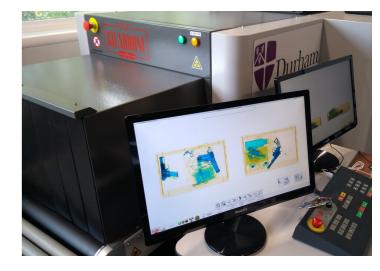
		Durham X-ray Dataset (Dbf3)				HMG (FFOP)
	Method	gun	gun-parts	knife	overall	full-weapon
	AnoGAN	0.598	0.511	0.599	0.569	0.703
	Eff GAN	0.614	0.591	0.587	0.597	0.712
-	GANomaly	0.747	0.662	0.520	0.643	0.882
ti	stic: AUC	V	ergenne de structures, de grant openid	X	*COLUMN COLUMN C	V

- 3rd generation deep net approaches
 - need normal-only training data GANomaly [Akcay et al. 2018]
 - USE Of object-wise and component-wise anomalies [Gaus et al. 2019 + in press]

Single signature feature-point based **detection**: ~90% detection

Images [Flitton, Breckon, Megherbi - 2010]

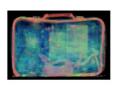
Working with:



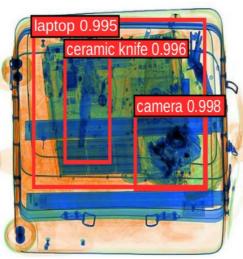
"bag of visual words" generalized signature classification : \sim 98+% detection, low FP (<1%)

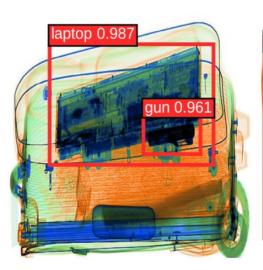
Experience in the Field ...

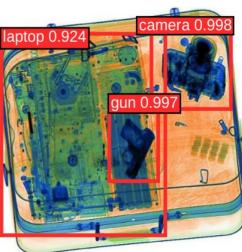
- Training Data:
 - CT: ~800-1,000+ bags
 - 2D X-ray : UK gov. + our own on-site X-ray scanner (~100,000+ images)
- Funding: $2007 \rightarrow 2019 +$



- Today: 10+ years, 10+ projects and 25+ publications later
- Publications: "never unreasonably withheld"
 - published in leading conference / journal venues
 - wider impact in generalized 3D object recognition + medical CT


Algorithm Deployment: 3D TIP solution





Automatic Prohibited and Contraband Item Detection in X-ray and Computed Tomography Security Screening – a research snapshot

toby.breckon@durham.ac.uk / +44 191 334 2396

http://www.durham.ac.uk/toby.breckon

References: Latest Technical Publications

X-ray Detection:

On Using Deep Convolutional Neural Network Architectures for Automated Object Detection and Classification within X-ray Baggage Security Imagery (S. Akcay, M.E Kundegorski, C.G. Willcocks, T.P. Breckon), In IEEE Transactions on Information Forensics & Security, IEEE, Volume 13, No. 9, pp. 2203-2215, 2018..

Transfer Learning Using Convolutional Neural Networks For Object Classification Within X-Ray Baggage Security Imagery (S. Akcay, M.E. Kundegorski, M. Devereux, T.P. Breckon), In Proc. International Conference on Image Processing, IEEE, 2016. (to appear)

Anomaly Detection: Skip-GANomaly: Skip Connected and Adversarially Trained Encoder-Decoder Anomaly Detection (A. Akcay, A. Atapour-Abarghouei, T.P. Breckon), In Proc. Int. Joint Conference on Neural Networks, IEEE, 2019.

GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training (S. Akcay, A. Atapour-Abarghouei, T.P. Breckon), In Proc. Asian Conference on Computer Vision, Springer, 2018.

3D CT Overview: A Review of Automated Image Understanding within 3D Baggage Computed Tomography Security Screening (A. Mouton, T.P. Breckon), In Journal of X-Ray Science and Technology, IOS Press, Volume 23, No. 5, pp. 531-555, 2015.

3D CT Detection & Segmentation:

Materials-Based 3D Segmentation of Unknown Objects from Dual-Energy Computed Tomography Imagery in Baggage Security Screening (A. Mouton, T.P. Breckon), In Pattern Recognition, Elsevier, Volume 48, No. 6, pp. 1961–1978, 2015.

Object Classification in 3D Baggage Security Computed Tomography Imagery using Visual Codebooks (G.T. Flitton, A. Mouton, T.P. Breckon), In Pattern Recognition, Elsevier, Volume 48, No. 8, pp. 2489–2499, 2015.

3D Object Classification in Baggage Computed Tomography Imagery using Randomised Clustering Forests (A. Mouton, T.P. Breckon, G.T. Flitton, N. Megherbi), In Proc. International Conference on Image Processing, IEEE, pp. 5202-5206, 2014

All available open access - full listing including all other references.