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Qutline and conclusions

* A multimodality breast imager

e Data analysis pipeline

e Clinical study and results

* New approach to fuse structural priors

e Conclusion:

° Solving inverse problems with structural
priors can enhance resolution and contrast in
a functional imaging modality



Breast imaging: clinical challenges

e Breast cancer results in ~40,000 death per
year in the US

 Mammography discovers 80% of the cancers,
but also results in unnecessary biopsy

70~80%

» Mammography misses 44% early cancers
(DCIS)

e Difficulty in dense breasts (in younger

people)

e Good penetration and high contrast makes
optical imaging a promising candidate



Tissue absorption and

chromophores
e Low absorption between 600nm-1000nm (near-
. ultraviole visi ble near infrare
infrared) T —
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e By measuring absorptions at multiple
wavelengths, one can calculate the
concentrations of the chromophores

Near-infrared spectroscopy for the study of biological tissue
Angelo Sassaroli, et al. Tufts Univ



Difficulties in optical image
reconstructions

e Photon transport is highly non-linear
> Must use advanced computational models

* Inverse problem is ill-posed: sensitive to noise
> Must smooth the solution to gain stability

e Sparse source/detector locations
o Limited sampling of the target domain

* Generally resulting in functional images with
poor resolution

* Win-win: Data fusion from X-ray structure
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Reconstruction without structural
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Limitations of binary segmentation

e Not all tissues can be
well separated

¢ Fine structure info is
lost

* [ntroduces
segmentation error,
sometimes it counter-
weights the benefit of
the prior

F Compositional-prior-guided image reconstruction algorithm for multi-modality imaging

. Abstract | Full Text: PDE (1608 KB | XHTML @
o Biomedical Optics Express Vol 1, 25,1, pp. 2253235 (20100

o Qiangian Fang, Richard H. Moore, Daniel B. Kopans, and David & . Boas




A healthy breast with priors
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A healthy breast with priors
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Tumor with healthy-tissue priors
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Statistical tests (p-values)

Fibroglandular Tissue

Optical Property and Malignant Solid Benign Breast with
Tissue Type Tumor Lesion Cyst Lesion™ Normal Breast’
Hb,
Malignant tumor e .025+% .0033*% .0062*% .25
Solid benign lesion e e 1 017F 017+F
Cyst . e . .0032% .0012%
So,
Malignant tumor e A7 <.0005*% 1 16
Solid benign lesion . ... .026% .33 .22
Cyst . e . .038+% <.0001#
" at 830 nm
Malignant tumor . 24 A1 .064 .0083*
Solid benign lesion e ... .24 .46 15
Cyst . e e .049% .02*
HbT Malignant Solid Benign Cyst Fibrogland. Fibrogland.
Malignant (26) 0.04 0.13 x 0.08 x 0.48
Solid Benign (17) 0.49 0.07 x 0.19 x )
Cyst (8) 0.03 0.02 Using only the
S0, healthy tissue
Malignant (26) 0.23 0.35x 0.36 0.46 structures
Solid Benign (17) 0.19 0.26 0.46 reduces tumor
M at830nm statistical
Malignant (26) 0.41 0.24 0.008 v 0.46 x . epe
_ _ significance
Solid Benign (17) 0.41 0.13 0.21

Cyst (7) 0.04 0.24 x
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Add additional tumor priors
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Another malignant tumor (60165L)

g No prior 2-comp. Binary 3-comp.




Add statistical tumor priors

¢={Ca, Cf, Ct}
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Conclusions

e Optically derived physiological parameters correlate
with tumor malignancy and can be potentially used to
differentiate malignant from benign lesions and reduce
false positives.

e Fusing x-ray tissue structure into optical image
reconstruction is highly beneficial by dramatically
improving the spatial resolution and contrast of the
tumors.

o TODO:

o Statistical tests for tumor-prior reconstructions
° Interactive diagnosis powered by real-time reconstruction

o Efficient algorithm to define tumor priors (as part of the
optimization, search algorithm, multi-foci, shape-based)
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