COMPLEX DIELECTRIC MATERIAL CHARACTERIZATION BY MM WAVES FOR 3-D PASSENGER SCREENING AND IMAGING Steven A. Johnson TeleSecurity Sciences Las Vegas, NV

Department of Home Land Security (DHS) Conference/Workshop ALERT

(Awareness and Localization of Explosives-Related Threats) Northeastern University (NEU) A DHS CENTER OF EXCELLENCE Boston, MA November 8-9, 2011 (Staved at Holiday Inn, 69 Boson Street, Boston, MA)

SUMMARY OF PRESENTATION

- I. A new method for using millimeter (mm) wave scanning of human subjects and objects is proposed which reconstructs a 3-D image of dielectric constant and electrical conductivity.
- It is an extension of a working clinical method for making 3-D images of breast cancer using ultrasound INVERSE SCATTERING TOMLGRAPHY.
- 3. A tentative specification and architecture is show to construct such a passenger scanner.
- 4. Using this architecture, images of two respective simulated passengers, with objects of different conductivities attached to their skin, were computed using the Born approximation from simulated data.
 5. Color scale rendition of these computed images clearly show the same body but different objects.

Simulated, EM (IST) Image of Cylinder with Attached Objects

SIMULATED RECONSTRUCTION OF FIRST OBJECT

SINGLE-FREQUENCY SIMULATED HOLOGRAPHIC BACK-PROPAGATION TOMOGRAPHIC (HBT) RECONSTRUCTION OF A HORIZONTAL SLICE THROUGH A LOSS DIELECTRIC CYLINDER ("TORSO") WITH NEARBY RECTANGULAR EXTERNAL OBJECT. THE INVERSE SCATTERING ALGORITHM IS ABLE TO RESOLVE THE GAP BETWEEN THE OBJECT AND TORSO, INDICATING A TRUE REENTRANT 3-D IMAGE RECONSTRUCTION. IN THIS IMAGE, THE ELECTRICAL CONDUCTIVITY OF THE BODY AND THE EXTERNAL OBJECT IS 1 S/M (SIEMENS/METER).

SIMULATED RECONSTRUCTION OF SECOND OBJECT A COLORIZED IMAGE THAT SHOWS THE CONTRAST BETWEEN THE EXTERNAL MATERIAL OBJECT (METALLIC) AND THE CYLINDRICAL BODY (LOSS DIELECTRIC). IN THIS IMAGE, THE ELECTRICAL CONDUCTIVITY OF THE BODY IS THE SAME AS IN THE IMAGE TO THE LEFT, BUT THE EXTERNAL OBJECT CONDUCTIVITY IS 100 S/M. THE DIFFERENCE IN COLOR OF THE OBJECT BETWEEN THE RIGHT AND LEFT IMAGES IS DUE TO A RESCALED COLOR PALETTE. NOTE THE APPARENT CHANGE IN SHAPE AND COLOR OF THE EXTERNAL OBJECT DUE TO ITS GREATER CONDUCTIVITY THAN IN THE LEFT SIMULATION.

MATERIAL CHARACTRIZATION ABLE Millimeter Wave Passenger

Combined mono-static and bi-static antenna geometry and ray paths

 $c(x) = light speed in a uniform slab thickness L with nohorizontalvariation of material value<math>\sigma(x) = absorption coefficient at same x in same slab$

Simple formula for product c(x)o(x)

On solving these four equations for c(x) and σ(x), we derive a quantitative material measure:

• $c(\mathbf{x})\sigma(\mathbf{x}) = [\ln(I_1/I_2)]/(t_1-t_2).$ Equ.(1)

Fresnel Reflection Coefficients: $E_V = s \& E_H = p$

Figure 3 – Refraction plane defined by incident, reflected & refracted rays.

Reflection Coefficients: V & H

Fresnel's Conservation of Energy Laws for Polarized Transmission and Reflection

However the laws of power (not amplitude) distribution among incident (I), reflected (R) and transmitted (T) rays is given by a third set of laws deduced by Fresnel, using conservation of energy, and are given for S polarization by

$$R_{\rm S} = R_{\rm V} = (n_1 \cos\theta_{\rm I} - n_2 \cos\theta_{\rm T})^2 / (n_1 \cos\theta_{\rm I} + n_2 \cos\theta_{\rm T})^2.$$

For S-polarized (also called V or vertical polarization, since the electric vector is perpendicular to the 2-D reflection-refraction plane) and by

$$R_{\rm P} = R_{\rm H} = (n_1 \cos\theta_{\rm T} - n_2 \cos\theta_{\rm I})^2 / (n_1 \cos\theta_{\rm T} + n_2 \cos\theta_{\rm I})^2 ,$$

for P polarization (also called H or horizontal, since the electric field vector is in the plane of reflection- refraction). Conservation of energy gives $T_V = 1 - R_V$ and $T_H = 1 - R_H$. From the figures below we note that the S = V and P = H polarizations behave very differently (they only take common values at 0 degree incident angles and at 90 degrees for non- internally reflection case.

Extension of above methods

$c(\mathbf{x})\sigma(\mathbf{x}) = [\ln(I_1/I_2)]/(t_1-t_2).$ Equ.(1)

 Extension of above methods in a later version to use Fresnel reflection coefficients. As a refinement, we note that if the transmission (T₁ and T₂ for respective paths 1 and 2) and reflection coefficients R₁ and R₂ for respective paths

 $c(x)\sigma(x) = [\ln(I_1/I_2) - 2\ln(T_1/T_2) - \ln(R_1/R_2)]/(t_1 - t_2)$ Equ.(2)

Finding Absorption Coefficient σ(x)

From the Fresnel formulas and measurements of θ_I, θ_T, R_S = R_V, and R_P = R_H, it is possible to solve for n₁ and n₂. Once n₁ and n₂ are known it is possible to use the bi-static data to find the absorption coefficient from the product c(x)σ(x). Then, c₂(x) = n₂(x)c_o(x), and the absorption coefficient

$$\Box \ \sigma_2(\mathbf{x}) = \left[c(\mathbf{x})\sigma(\mathbf{x}) \right]_2 / c_2(\mathbf{x}).$$

Comparison of Features

TABLE B Comparison of Features				
Feature	L-3 Provision	Proposed TSS System		
Lateral Resolution on surface	8.3 mm (air)	4.7 mm (air)		
Depth resolution	7.5 mm (air)	4.3 mm (air)		
Material Characterization	none	 (1) Fresnel Reflectivities: R_V, R_H for respective V, H Polarizations. (2) Product of attenuation coefficient and phase speed = [(c_on)s]. (3) Attenuation = σ₂ = [(c_on)σ]₂/(c_on)₂. (4) Polarization: R_V/R_H or (R_V - R_H)/ (R_V + R_H). 		

Block Diagram of proposed Scanner

Inverse Scatter (Inversion) Tomography (IST) Ultrasound Breast Cancer Scanner

Ductal Carcinoma In Situ

Coronal

Sound speed

Attenuation

Reflection

Axial

Benign TumorsAxialSagittal

Sound Speed

Attenuation

Reflection

Top View of "phone booth scanner"

Transmitter switching circuits

Alternate way with amplitude control

Finding absorption coefficient $\sigma_2(\mathbf{x})$

From the Fresnel formulas and measurements of θ_I, θ_T, R_S = R_V, and R_P = R_H, it is possible to solve for n₁ and n₂. Once n₁ and n₂ are known it is possible to use the bi-static data to find the absorption coefficient from the product c(x)σ(x). Then, c₂(x) = n₂(x)c_o(x), and the absorption coefficient

• $\sigma_2(\mathbf{x}) = [c(\mathbf{x})s(\mathbf{x})]_2 / c_2(\mathbf{x}).$

Plots of Transmit vs. Receiver Plane Element Number (scattering not shown)

More Plots of Transmit vs. Receiver Plane

Element Number (scattering not shown)

THE FINAL STEP: SIMULATION RESULTS

The above <u>ray-based</u> mathematics indicates that the problem for quantitative imaging of layers of materials is well posed and not singular.

Therefore, we skip ray-based inversion and pass on to finely sampled <u>wave equation methods</u> using an inverse scattering approach.

Use the Born approximation, since the simulated sample on the skin is thin (a few wave lengths thick).

Simulated, EM Inverse Scatter Tomography with Attached Objects

Fig.7.a Simulated reconstruction of first object

Single-frequency simulated holographic back-propagation tomographic (HBT) reconstruction of a horizontal slice through a loss dielectric cylinder ("torso") with nearby rectangular external object. The inverse scattering algorithm is able to resolve the gap between the object and torso, indicating a true reentrant 3-D image reconstruction. In this image, the electrical

FIG. B SIMULATED RECONSTRUCTION OF SECOND OBJECT

A COLORIZED IMAGE THAT SHOWS THE CONTRAST BETWEEN THE EXTERNAL MATERIAL OBJECT (METALLIC) AND THE CYLINDRICAL BODY (LOSS DIELECTRIC). IN THIS IMAGE, THE ELECTRICAL CONDUCTIVITY OF THE BODY IS THE SAME AS IN THE IMAGE TO THE LEFT, BUT THE EXTERNAL OBJECT CONDUCTIVITY IS 100 S/M. THE DIFFERENCE IN COLOR OF THE OBJECT BETWEEN THE RIGHT AND LEFT IMAGES IS DUE TO A RESCALED COLOR PALETTE. NOTE THE APPARENT CHANGE IN SHAPE AND COLOR OF THE EXTERNAL OBJECT DUE TO ITS GREATER CONDUCTIVITY THAN IN THE LEFT SIMULATION 26

Normalizing for Antenna Response

Remove the angular, polarization, frequency, Tx and Rx coupling and noise properties of antenna

THE END

Thank you.

TABLE C Comparison of Technical Specifications					
Specification	L-3 Provision	Proposed TSS System			
Band width = B Number of frequencies = N _f Frequency sample interval = Df = B/N _f	14 GHz 32 14 GHz/32 = 0.44 GHz	40-50 GHz 90-100 40 GHz/95 = 0.42 GHz			
Lateral Resolution = $\lambda[(2\sin(q/2)] =$	(26 to 40 GHz) => 8.3 mm	50 to 90GHz) => 4.4 mm			
Depth Resolution = c/2B =	3x10^10/2x14x10^9 => 1.07mm	3x10^10/(2x25x10^9 => 0.6 mm			
Accuracy of reflectivity =D(R)/ <r></r>	Not quantattive	10 %			
Accuracy of D(cs) /<(cs) > =	Not quantattive	10 %			
Polar $[(-/(+](q) =$	none	0 % < polarization < 100 %			
Stand-off Range (outside clothing)	Circle of R cm = 40 cm	Circle of R cm less range gate = 10 cm			
Image rendering	Holographic image rendered as a gray surface	Inverse scattering reconstruction with color scale calibrated to material properties			
Scan time	3 sec	4 sec			
Compute time	6 sec	4 seconds			
Purchase price for customer	\$200,000	\$300,000			

B = bandwidth, q/2 =half angle of aperture, c = speed of light in air $3x10^{10}$ cm/sec. Finite skin thickness material parameter inversion. S = (0.61 λ)/(n sin(q/2)) = Resolution, λ = wavelength, n = Refractive index, sin(q) = maximum angle of light gathering. Both n and sin(q) are constants for a given objective lens, their product is referred to as N.A. or "Numerical Aperture".

TABLE B Comparison of Features				
Feature	L-3 Provision	Proposed TSS System		
Resolution on surface	8.3 mm (air)	4.4 mm (aiir)		
Depth resolution	5 mm (air)	0.6 mm (water)		
Material Characterization	None	 Fresnel Reflectivities: R_V, R_H for respective V, H Polarizations. Product of attenuation coefficient and phase speed = [(c_on)s]. Attenuation = s = [(c_on)s]/(c_on). Polarization: R_V/R_H, (R_V - R_H)/(R_V + R_H). 		
Image Rendering	Gray surface	Color surface with material classification		
Scan time	2 seconds/scan	2 seconds/scan		
Throughput	200 to 300 passengers/hour	300 passengers/hour		
Cost (large production)	\$120,000	\$200,000		

TABLE C Comparison of Technical Specifications					
Specification	L-3 Provision	Proposed TSS System			
Band width = B Number of frequencies = N _f Frequency sample interval = Df = B/N _f	14 GHz 32 14 GHz/32 = 0.44 GHz	40-50 GHz 90-100 40 GHz/95 = 0.42 GHz			
Lateral Resolution = $\lambda[(2\sin(q/2)] =$	(26 to 40 GHz) => 8.3 mm	50 to 90GHz) => 4.4 mm			
Depth Resolution = c/2B =	3x10^10/2x14x10^9 => 1.07mm	$3x10^{10}/(2x25x10^{9} => 0.6 \text{ mm}$			
Accuracy of reflectivity =D(R)/ <r></r>	Not quantattive	10 %			
Accuracy of D(cs) /<(cs) > =	Not quantattive	10 %			
Polar [(<e<sub>v>- < E_H>/(<e<sub>v> + <e<sub>H>](q) =</e<sub></e<sub></e<sub>	none	0 % < polarization < 100 %			
Stand-off Range (outside clothing)	Circle of R cm = 40 cm	Circle of R cm less range gate = 10 cm			
Image rendering	Holographic image rendered as a gray surface	Inverse scattering reconstruction with color scale calibrated to material properties			
Scan time	3 sec	4 sec			
Compute time	6 sec	4 seconds			
Purchase price for customer	\$200,000	\$300,000			

B = bandwidth, q/2 =half angle of aperture, c = speed of light in air $3x10^{10}$ cm/sec. Finite skin thickness material parameter inversion. S = (0.61 λ)/(n sin(q/2)) = Resolution, λ = wavelength, n = Refractive index, sin(q) = maximum angle of light gathering. Both n and sin(q) are constants for a given objective lens, their product is referred to as N.A. or "Numerical Aperture".

Simulated, EM (IST) Image of Cylinder with Attached Objects

SIMULATED RECONSTRUCTION OF FIRST OBJECT

SINGLE-FREQUENCY SIMULATED HOLOGRAPHIC BACK-PROPAGATION TOMOGRAPHIC (HBT) RECONSTRUCTION OF A HORIZONTAL SLICE THROUGH A LOSS DIELECTRIC CYLINDER ("TORSO") WITH NEARBY RECTANGULAR EXTERNAL OBJECT. THE INVERSE SCATTERING ALGORITHM IS ABLE TO RESOLVE THE GAP BETWEEN THE OBJECT AND TORSO, INDICATING A TRUE REENTRANT 3-D IMAGE RECONSTRUCTION. IN THIS IMAGE, THE ELECTRICAL CONDUCTIVITY OF THE BODY AND THE EXTERNAL OBJECT IS 1 S/M (SIEMENS/METER).

SIMULATED RECONSTRUCTION OF SECOND OBJECT A COLORIZED IMAGE THAT SHOWS THE CONTRAST BETWEEN THE EXTERNAL MATERIAL OBJECT (METALLIC) AND THE CYLINDRICAL BODY (LOSS DIELECTRIC). IN THIS IMAGE, THE ELECTRICAL CONDUCTIVITY OF THE BODY IS THE SAME AS IN THE IMAGE TO THE LEFT, BUT THE EXTERNAL OBJECT CONDUCTIVITY IS 100 S/M. THE DIFFERENCE IN COLOR OF THE OBJECT BETWEEN THE RIGHT AND LEFT IMAGES IS DUE TO A RESCALED COLOR PALETTE. NOTE THE APPARENT CHANGE IN SHAPE AND COLOR OF THE EXTERNAL OBJECT DUE TO ITS GREATER CONDUCTIVITY THAN IN THE LEFT SIMULATION.

