

School of Engineering

## Model-Based Ideas for Sensor Fusion

Eric Miller Prof. of Electrical and Computer Engineering Tufts University <u>eric.miller@tufts.edu</u>



#### Overview

- Formulating the fusion problem
- Parameterization

   Results from Dual Energy CT study
- Model-based solution methods
  - Physics-based
  - Statistically-based



## Conclusions

- Model based methods have much to offer for fusion
- Principled approach to many issues associated with multi-sensor data acquisition, processing, and analysis
- Physics-based models allow for joint design and optimization of sensors and processing
- Statistically-based models allow for incorporation of prior information and exploitation of cross-modality correlations



## **The Problem: Security**



http://www.dlr.de/desktopdefault.aspx/tabid-6214/10201 read-26109/ http://www.tsa.gov/approach/tech/ait/how\_it\_works.shtm http://www.photonics.com/Article.aspx?AID=41330 http://www.diagnosticimaging.com/safety/content/article/113619/ 1521147 http://www.al-laporte.com/services

#### The Instruments



## **The Problem: Remediation**



- The scene: subsurface distribution of contaminant saturation
- The instruments and data:
  - Downstream hydrogeochemical sampling of contaminant concentration
  - Cross-stream electrical resistance tomography



#### **Common structure**

- Everyone is looking at the same *scene*
- Each *instrument* produces data that is somehow related to a *property* of the scene
  - Security
    - "Reflectivity" or spectral structure for imaging-type modalities
    - Humidity, temperature, other environmental properties
    - Photoelectric and Compton scattering coefficients
  - Remediation
    - Electrical properties
    - Chemical composition
- Mapping from property to data can be highly complex, perhaps unknown, function of time, space, wavelength, etc.
- Goal: Recover some aspect about the scene in a manner that reflects the information in the various sources of data



## What do we want?

- Important to be precise about what we want from the data
  - Presence of a material
  - Rough characterization (e.g., centroid and mass)
  - Detailed image of the scene
- Why?
  - Desired information should impact the design of the processing and perhaps even the instruments
  - May be possible to reduce quantity of data to be acquired, simplify equipment, etc.



## What do we want?

• To be a bit more quantitative, looking for high sensitivity of data to the parameters being sought

∂datum<sub>i</sub> ∂pixel<sub>j</sub> may be small

but ∂datum<sub>i</sub> ∂radius may be large



- Pixel-by-pixel approach "diffuses" information in the data across a huge number of unknowns
- More parametric methods may better concentrate the information to explain those degrees of freedom that actually are of most direct interest



# **Dual Energy CT Example**





Object of interest: the thin yellow object

Object of interest: plexiglass

20406080100



# **Dual Energy CT Results**





State of the art, FBP-based processing DEFBP Compton Image 0.2



40 60

80 100

100

20



#### **More Results**







20 40 60 80 100

#### School of Model Based Approach to **Fusion**

Engineering

- Two sets of quantities
  - Data
  - Parameters
- Data:
  - Photon counts
  - Humidly levels
  - Voltages
  - Contaminant concentrations
- Parameters: derived from constitutive properties of the scene
  - Photoelectric or Compton scattering coefficients
  - Electrical permittivity and conductivity
  - Chemical concentrations
  - Contaminant saturation
- Models relate (1) data to parameters and (2) parameters to parameters



#### Data models

• From physics

$$d_i = f_i(x_i) \quad i = 1, 2, \Box, N$$

- Many forms
  - Direct observation (f = identity)
  - Matrix equation
    - Spectral unmixing
  - Integral equation
    - Radon transform for CT
    - Kirchoff integral for some optics problems
  - Partial differential equation
    - Flow and transport
    - Electrical resistance tomography



# **Property Models**

- There has to be *some* relationship among the *x<sub>i</sub>* otherwise there is no fusion.
- A number of options or such models
  - Physics-based
  - Statistical
  - Geometric



## **Physics-based**

- Petro-physical relationships
- Archie's law (electrical conductivity to porosity, saturation..)

$$\sigma = a\sigma_b \phi^m$$

• Complex refractive index method (dielectric to porosity and saturation)

$$\sqrt{\varepsilon} = (1 - \phi)\sqrt{\varepsilon_s} + \phi S\sqrt{\varepsilon_w} + n(1 - S)\sqrt{\varepsilon_a}$$

Gassmann (seismic velocities to bulk/shear modulus, density)

$$V_p^2 = \frac{K + 4/3\mu}{\rho} \quad V_s^2 = \frac{\mu}{\rho}$$



## **Statistical Models**

- Many, many options here
  - Lead to some type of maximum a posteriori or Bayesian approach to fusion
- Pairs of parameters are the same up to some noise

 $x_i = x_j + w_{i,j} \quad w_{i,j} \sim N(0, R_{i,j})$ 

• Parameters are jointly Gaussian

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \sim N \left( \begin{bmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{bmatrix}, \begin{bmatrix} R_{1,1} & R_{1,2} & R_{1,3} \\ R_{2,1} & R_{2,2} & R_{2,3} \\ R_{3,1} & R_{3,2} & R_{3,3} \end{bmatrix} \right)$$

• Pairs of parameters have large mutual information

$$MI(x_1, x_2) = \sum p(x_1, x_2) \log \frac{p(x_1, x_2)}{p(x_1)p(x_2)}$$



## **Geometric Models**

 An object in one property is an object in all properties

$$x_i(r) = c_i(r) \chi(r)$$



Same shapes,  $\chi$ , different contrasts  $c_i$ 





## **End Result**

• Model based approach leads to variational methods for fusion

$$\hat{x}_{1}, \Box, \hat{x}_{N} = \underset{x_{1}, \Box, x_{N}}{\operatorname{arg min}} \sum_{i=1}^{N} \left\| d_{i} - f_{i}(x_{i}) \right\|_{2}^{2} + \Omega(x_{1}, \Box, x_{N})$$

Want to fit to the data

Encourage similarity based on property models

- Other formulations possible as well depending on the models
- Structure leads to interesting and efficient algorithms
- Variational approach can be used for
  - Performance analysis
  - Evaluation of information content of data sources
  - Optimization of data collection or instrument design
  - Etc



#### Example





#### Forward Models

#### **Poisson's Equation**

$$\nabla \cdot \big( \boldsymbol{\sigma}(\mathbf{x}) \nabla \boldsymbol{v}(\mathbf{x}) \big) = i(\mathbf{x})$$

- $\sigma(\mathbf{x})$  Electrical Conductivity
- $i(\mathbf{x})$  Current Source Distribution
- $v(\mathbf{x})$  Electrical Potential



#### **Mass Transport Equation**

$$\frac{\partial}{\partial t} \left( \theta_{w} C_{i} \right) + \nabla \cdot \left( C_{i} \vec{q} - \theta_{w} \mathbf{D}_{H}^{i} \cdot \nabla C_{i} \right) = E_{an_{i}}$$

- $\theta_{_{\!W}}$  Volumetric Water Content
- $C_i$  Mass Concentration of Component i
  - Specific Discharge from Darcy's Law
    - Hydrodynamic Dispersion Tensor
    - The Interphase Mass Exchange of Component i from the NAPL to aqueous phase



#### Simulations



Left: Original Saturation Profile at 1% and 15%, Right: Original Saturation Profile at 1% only



#### Initialization





Original

Initial shape. Initial saturation = 1%



#### Results





Original

Final reconstruction, final saturation value= 2.92%



#### Results



Original

Reconstruction side view



# **Security Application**



- Currently considering THz spectroscopy + structural modality(ies)
- Proposal under review at DHS involving team from Tufts (Miller, Tracey, Sonkulsale, Aeron) BC (Padilla), and Kaiserslautern (Rahm and Beigang)
- Characteristics
  - Tight integration of instruments and processing
  - Model based (physics sensor models and statistical/information theoretic property models)
  - Extensive experimental component



## Conclusions

- Model based methods have much to offer for fusion
- Principled approach to many issues associated with multi-sensor data acquisition, processing, and analysis
- Physics-based models allow for joint design and optimization of sensors and processing
- Statistically-based models all for incorporation of prior information and exploitation of cross-modality correlations