Fusion in Medical Imaging:Two Case Studies

Homer Pien, PhD hpien@partners.org November 2011

Summary

- □ Two case studies:
 - > PET versus PET-CT
 - Triage of Acute Coronary Syndrome (ACS) patients in ERs
- □ PET-CT
 - There was considerable <u>a priori</u> justification why a fused system would be beneficial
 - Better registration, correlation between structure and function, attenuation correction, quantitation
 - PET-CT fusion were being done manually before hybrid systems came on the market

□ ACS

- While ACS triage continues to evolve, there is a priori justification why fusion of disparate sources of information is beneficial
 - Permits individualized assessment of the patient
 - Results in significantly better outcomes of patients

Positron emitting water

PET Imaging

Positron emitting glucose

Radionuclide	Half-life	Common forms
15O 13N	2 min	¹⁵ O ₂ , C ¹⁵ O ₂ , C ¹⁵ O
¹³ N	10 min	¹³ NH ₃ , ¹³ N ₂
"C	20 min	"CO ₂ , "CO, "CH
¹⁸ F	1.8 h	¹⁸ F ₂ , H ¹⁸ F
^{/°} Br	16.2 h	⁷⁶ Br ₂
124	4 days	Na ¹²⁴ I

FDG uptake

Pictures from Wikipedia

Brief History of PET

□ 1950's

- Gordon Brownell at MGH
- First positron image brain tumor localization (1951)
 - 2 decades before MRI and CT

□ 1960's and 1970's

- Emissions computed tomography and Mark-II scanner
- Chesler's FBP 3-D recon applied to CT and PET
- First commercial PET scanner (1970)
- Phelps and the PETT-III (1974) 2-cm resolution
- Tracers: O15-water (1970) and FDG (1976)

CT MRI PET

1980's and 1990's

- PET transitioned from research to clinical tool
- □ It was well recognized that PET, by itself, did not provide sufficient resolution or anatomic details
 - Used in conjunction with CT and MR to provide structural information to complement PET's functional information
- Separate PET and CT scans were performed, but patient movement made image registration an issue
- Also recognized that PET was not quantitative
 - Needed to properly account for vast attenuation differences between bone, tissue, and air

PET-CT

MGH LMIC RADIOLOGY

- □ Introduced in 2000
- Time Magazine'sInvention of the Year
 - > Dec 2000

Siemens Biograph 64 PET-CT

Nuclear Medicine

Dominique Delbeke, MD, PhD William H. Martin, MD James A. Patton, PhD Martin P. Sandler, MD

Index terms:

Fluorine, radioactive Neoplasms, PET Positron emission tomography (PET), comparative studies

Radiology 2001; 218:163-171

Abbreviations:

AC = attenuation correction
COSEM = coincidence-ordered
subsets expectation maximization
FBP = filtered back projection
FDG = 2-[fluorine-18]fluoro-2-deoxyp-glucose

Value of Iterative Reconstruction, Attenuation Correction, and Image Fusion in the Interpretation of FDG PET Images with an Integrated Dual-Head Coincidence Camera and X-Ray-based Attenuation Maps¹

PURPOSE: To compare lesion detectability on 2-[fluorine-18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomographic (PET) images obtained with a dual-head coincidence (DHC) gamma camera equipped with an integrated x-ray tube-based transmission system (a) with images reconstructed with filtered back projection (FBP) and those reconstructed with an iterative reconstruction algorithm based on coinci-

¹ From the Section of Nuclear Medi-

Figure 1: Non—small cell lung cancer (arrow in b) in the left upper lobe is shown in (a) coronal PET maximum intensity projection (MIP) and (b) transverse PET image, (c) transverse PET/CT image, and (d) transverse CT lung window image. (e) Transverse PET image shows small focus at left skull base (arrowhead, arrow in a); (f) on transverse PET/CT scan, focus appears to be a bone metastasis (arrowhead) in the mandibular condyle, which was not noted at CT alone (not shown). (g) This was confirmed with follow-up transverse PET/CT, where interval growth of the lesion (arrowhead) was seen. Osseous metastasis was confirmed at histologic examination.

Attenuation Correction

PET-CT Registration

PET-CT **PET only**

Problem

ACUTE CORONARY SYNDROME (ACS)

- Patient enters the Emergency Room complaining of sharp chest pains
- How should the ER triage the patient?

- □ QRS complex
 - > Ventricular depolarization
- o T
 - > Ventricular repolarization
- □ ST
 - > STEMI
 - > NSTEMI

EKG

ACS Triage- 1988

Triage decisions based on case history, symptoms, and EKG

Figure 2. Questions to Be Asked of Patients with a History of Angina or Myocardial Infarction (MI) Who Do Not Have New ST Elevation or Q Waves and Whose Pain Began Less Than 48 Hours Previously.

ACS Triage - 2009

Triage now consists of:

- History / risk factors
- Blood test / enzymes
- EKG
- Symptoms
- Imaging
- Progression of enzymes

Summary

- □ Two case studies:
 - > PET versus PET-CT
 - Triage of Acute Coronary Syndrome (ACS) patients in ERs
- □ PET-CT
 - There was considerable <u>a priori</u> justification why a fused system would be beneficial
 - Better registration, correlation between structure and function, attenuation correction, quantitation
 - PET-CT fusion was being done manually before hybrid systems were commercially introduced

□ ACS

- While ACS triage continues to evolve, there is a priori justification why fusion of disparate sources of information is beneficial
 - Permits individualized assessment of the patient
 - Results in significantly better outcomes of patients