What does Carl want me to talk about?

Jeremy M Wolfe
Visual Attention Lab
Brigham and Women's Hospital
Harvard Medical School

Five conclusions

- 1. Humans are "fusion" engines (we call it "cue combination". Very rule-governed)
- 2. Humans are really good at some tasks (e.g. contour completion, rapid object identification)
- 3. Humans are really bad at some tasks (e.g. profound capacity limits, Bayes gone bad)
- 4. Expert behavior is worth studying ... and possibly modifying
- 5. You really want to work with researchers who know about the human angle (and I can help you find them.....Ellenbogen's cautionary tale notwithstanding)

1. Fusion (Cue Combination)

Awesome sensor fusion

Cue Combination in human vision

Multiple cues to bump height & shape Lighting Texture
Maybe touch

Standard cue combination might be a weighted sum

Cue Combination in human vision

Find the tiny line segment

Sometimes one signal trumps or vetoes the others

Cue Combination in human vision

Sometimes cue combination produces an emergent property like stereoscopic depth

Cue Combination in human vision The role of the observer

Peter Tse's Demo

Humans are good

Remember this slide?

Multiple cues to bump
height & shape
Lighting
Texture
Maybe touch
etc

Humans are really good at inferring contours

Look for the chimp

Humans can do recognition at high speed

When people fail

Remember this

Any change?

Remember this

Remember this

Any change?

Visual working memory has a capacity limit of ~4

4 what?

Objects?

Features?

Humans respond to variables in ways that you may not want

Look for the same target at different prevalence

The errors trade off

(remember, the stimuli are not changing)

Many other such variables

- 1.Reward structure
- 2.Fatigue
- 3. Circadian phase
- 4.Bias
- 5.Individual differences
- 6.etc

3. Understanding expert behavior

Eye tracking is a good example

The classic eye tracking result on the development of expertise

Eye movements in 3d volumes of images

What the behavior looks like

Red traces show eye movements in X & Y

We are also tracking the slice as a measure of Z position.

Let's color code the quadrants

Here is Z with quadrants in XY colorcoded for one expert radiologist

But here is another expert

Drillers & Scanners

Does it matter?

6 experts

'Drillers'

The classic 2D data

Many more search errors

The 3D data

Why do search errors go up?

Many more search errors

Might be useful to feedback eye movements to the observer.

Part 5: A research strategy

- 1. Bring in a perception / behavioral science person
- 2. Ask the right questions
- 3. Abstract those questions so that they can be studied in NON-experts
- 4. Transition the key findings into studies with experts.
- 5. Basic science gets into The Literature
- 6. Improvements get into design.

Thanks

If you want to follow-up wolfe@search.bwh.harvard.edu

Can radiologist beat chance in a glance? We ran an experiment

Look here

Flash a mammogram for 250 msec

Can radiologist beat chance in a glance? We ran an experiment

Flash a mammogram for 250 msec

Can radiologist beat chance in a glance? We ran an experiment

Flash a mammogram for 250 msec

Would you call back this patient?

Use a 100-pt rating scale

We tested 40+ radiologists at the Society for Breast Imaging

"We" =

Michelle Greene MIT

Karla Evans BWH

Dianne Georgian-Smith BWH

Robyn Birdwell BWH

Your answers form a 2 by 2 table

Here is how we are going to plot the data

And here are the results

No one is suggesting that your radiologist should make a decision in a quarter second!

How do we exploit this signal?

Answer 1: Build a pattern classifier

How do we exploit this signal?

Answer 2: Brain based image triage See Paul Sajda (Columbia),

Part 4: Do we have time for a little magic?

aboutapollo watchvideos moredetails an artful manipulator of awareness. **Forbes**

THE GENTLEMAN THIEF

ENTERTAINER • SPEAKER • CONSULTANT

For booking information, please contact your Event Specialist.

Why is this interesting?

Part 4: Do we have time for a little magic?

The Problem

When good CAD meets
low prevalence, the
marks are mostly false
positives
AND
Experts don't like
advice that is mostly
wrong.

Suppose you reverse-engineered this

Sleight of CAD?