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» One common assumption in classification problems is the
training/testing consistency of the data.

» This cannot be always satisfied, especially in complex applications
common in many areas, e.g., web document classification,
sentiment analysis, image annotation, face recognition.

» How to apply previous well-labeled data to a huge amount of
unseen data with possibly different distributions?

Problem Formulation and Solution

Key Idea & Contributions
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Contributions

We present a novel method for transfer learning via low-rank

representation, which we call it low-rank transfer subspace
learning (LTSL).

Problem Formulation
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» A given data set is seldom well described by a single subspace, rather,
data are more likely lying in several subspaces.

» Suppose we adopt source data to linearly represent target data to
achieve the purpose of knowledge transfer.

» For over-complete source data that span the entire feature space,
however, we could always obtain trivial solutions.

» The correct way might be using only a few data in the source domain

within an appropriate subspace to reconstruct a specific target data, as
shown in the above figure.

» Basic Problem: Given test data Xt from a union of multiple subspaces in
the target domain and training data Xs from a union of multiple
subspaces in the source domain, the goal is to find a discriminative
subspace P where test data can be linearly represented by the data
from some subspace Si in the source domain with rank constraint, i.e.,

P, Z = arg min F(P, X,) + rank(Z),
P.Z

s.t., P' X, =P'X,Z,

» where F(P.Xs) is a general subspace learning function and rank(Z) is the
constraint imposed on the knowledge transfer from Xs to Xt in the
projected subspace P.
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> |If there are target data that can not be well-explained by the source
data in the learned subspace P, we add an error term E:

P,Z, F = argmin F'(P, X;) +rank(Z) + A\||E||2.1,
P.Z.E

s.t., PP X, = P'X.Z + F.

Problem Solution and Experiments

» The former problem can be solved by augmented Lagrangian multipliers
(ALU). We therefore reformulate the previous problem into:

L = FP.X)+ ]l + ]2 (6)
+ <YV.P'X,—-P'X.Z2-E>+<Yy,Z—J>
+ L(IPTX, - PTX,Z — B} + 112 = J|}).

» Many well-established subspace learning methods can be incorporated
into our framework, and the difference among these methods lie in the
term F(P,. Xs). We show their corresponding formulations in next table:

Method Objective F'(P, Xs) Gradient VF'(P, X5)
PCA argmin Tr (—PTSP + (PT P —I)A) 2(—XP + PA)
LDA arg rﬁm Tr (P1 S, P+ (P1S,P —I)A) 2(Sw P + S, PA)
LPP? arg min Ti (PTX.LXIP+(PTX,DXIP—1)A) 20X LXTP+ X.DXI'PA)
NPE arg min TrIE)PTXS(I —W)T (I —wW)XIP+ (PTX.XTP—T1)A) 20X (I —W)T(I —WH)XTP+ X, XI'PA)
MFA® | arg nin Tr(PTX (D - W)XIP+ (PTX(Dp —Wp)XIP—DA) | 2(Xs(D-W)XIP - Xs(Dp — Wp)XIPA)
DLA* i arggmn Tr(PTXLXIP+ (PTP —1)A) (XoLXT + X LTXTYP 4 2PA

» We show three groups of experiments to validate the proposed

method, i.e., synthetic data, Yale B to CMU PIE (Y2P) face recognition,
and kinship verification.

» Group 1: Synthetic data, 2 classes in both source and target domains
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Experiments and Conclusions

» Group 2: Kinship verification, UB KinFace database

BEST RESULTS AND DIMENSIONS OF KINSHIP VERIFICATION.
Method PCA SLPP ULPP SNPE UNPE MFA DLA
No Transfer | 53.98%(11) | B55.00%(9) | B7.74%(11) | 53.26%(9) | 54.26%(21) | 52.74%(17) | BA.74%(35)
TSL 51.78%(25) | B54.02%(3) | B4.02%(11) | 50.74%(9) | 53.26%(0) | 52.24%(3) | 53.08%(39)
Our Method | 56.57%(10) | 57.17%(17) | 63.72%(11) | 54.60%(11) | 58.80%(3) | 54.50%(35) | 55.00%(33)

» Group 3: Face recognition, from Yale B to CMU PIE

BEST RESULTS AND DIMENSIONS OF PROBLEM Y 2P.

Method PCA SLPP ULPP SNPE UNPE DA MFA DLA
No Transfer | 28.6%(80) | 80.7%(80) | 78.3%(30) | 78.6%(80) | 73.1%(R0) | 75.4%(35) | 78.1%(35) | 74.1%(80)
TSL 30.9%(80) | 75.7%(75) | 67.0%(65) | 67.0%(65) | 52.1%(R0) | 59.6%(35) | 62.0%(35) | 72.8%(R0)
Our Mcthod | 77.6%(30) | 86.1%(75) | 84.6%(30) | 85.2%(75) | 83.5%(30) | 78.4%(35) | 82.2%(35) | 77.8%(30)
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Conclusions

In this paper, we proposed a novel framework towards transfer

subspace learning.

> Essentially, we utilize the low-rank constraint to bridge the
source and target domain in the low-dimensional space.

» In addition, many well-established methods can be incorporated
into our framework to form their low-rank transfer versions.

» Extensive experimental results on Yale B, CMU PIE and UB
KinFace databases sufficiently validate the effectiveness of our
method on solving cross-database learning problems.




	Slide Number 1

