# Northeastern University





## Low-Rank Transfer Subspace Learning Ming Shao, Carlos Castillo, Zhenghong Gu, Yun Fu Electrical and Computer Engineering, Northeastern University

| ributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Problem Formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N<br>$d_1$ – dimensionality of<br>high – dimensional space<br>$d_2$ – dimensional space<br>$d_2$ – dimensional space<br>$X_s$ – data in source domain<br>$X_t$ – data in target domain<br>P – projection matrix<br>M, N – number of samples,<br>where $M \gg N$<br>Z – Low-rank coefficient<br>matrix<br>r learning via low-rank<br>hk transfer subspace                                                                                                                                                                                                    | <ul> <li>Source Domain Target Domain General Comparison of the source Domain Target Domain (A)</li> <li>A given data set is seldom well described by a single subspace, rather, data are more likely lying in several subspaces.</li> <li>Suppose we adopt source data to linearly represent target data to achieve the purpose of knowledge transfer.</li> <li>For over-complete source data that span the entire feature space, however, we could always obtain trivial solutions.</li> <li>The correct way might be using only a few data in the source domain within an appropriate subspace to reconstruct a specific target data, as shown in the above figure.</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Exponiments and Conclusions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ugmented Lagrangian multipliers<br>revious problem into:<br>$ _{2,1}$ (6)<br>$E > + < Y_2, Z - J >$<br>$E   _F^2 +   Z - J  _F^2),$<br>g methods can be incorporated<br>among these methods lie in the<br>ling formulations in next table:<br>$\frac{Gradient \nabla F(P, X_s)}{2(-\Sigma P + PA)}$ $2(S_w P + S_b PA)$ $2(S_w P + S_b PA)$ $2(S_w P + S_b PA)$ $2(X_s \mathcal{L} X_s^T P + X_s D X_s^T PA)$ $2(X_s (I - W)^T (I - W) X_s^T P + X_s X_s^T PA)$ $2(X_s (D - W) X_s^T P - X_s (D_P - W_P) X_s^T PA)$ $(X_s L X_s^T + X_s L^T X_s^T) P + 2PA$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| o validate the proposed<br>AU PIE (Y2P) face recognition,<br>th source and target domains                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Conclusions         <ul> <li>In this paper, we proposed a novel framework towards transfer subspace learning.</li> <li>Essentially, we utilize the low-rank constraint to bridge the source and target domain in the low-dimensional space.</li> <li>In addition, many well-established methods can be incorporated into our framework to form their low-rank transfer versions.</li> <li>Extensive experimental results on Yale B, CMU PIE and UB KinFace databases sufficiently validate the effectiveness of our method on solving cross-database learning problems.</li> </ul> </li> </ul>                                                                          |





