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Overview

Objective: reduce measurement cost in decision systems
without performance degradation by using adaptive sensing

Adaptively collect measurements from different sensors based
on collected observations
Not all decisions require every sensor measurement
Reduce average sensing cost to meet budget

Result: Novel Multi-Stage Classifier Design Framework

A non-parametric theory for training adaptive classification
systems directly from data
Extends existing Machine Learning (ML) techniques
Suitable for both detection and multi-class decisions

Illustrate performance with experiments on collected data

Datasets from UCI ML Repository
Concealed explosive detection data (Courtesy of SAIC, S.
Macintosh)
Results show optimal performance with reduced budgets,
superior to that of alternative adaptive classifier designs
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Are all sensors necessary to classify every sample?

Some samples can be classified using only low cost sensor
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Strategy needs to be adaptive

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Digit 0

Digit 1

Digit 8

Sensor requirement is sample dependent
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Sensors have different acquisition costs

Sensor 1 
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Feature 1

Feature 2

Feature 3

Feature 4

Feature 5

Sensors:

physical measurement in some modalities
or computing features of various complexity

Cost: resources, time, computation ...

feature=measurement (possibly high dimensional)
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Cost Sensitive Objective

Classifier: f

Sample: x = [x1 x2 . . . xK ], True label: y

Cost of using f : Cost(f , x) =
∑

k δk1[f (x) uses feature k]

Objective:

min
f2F

Ex,y [Loss(f(x), y)]

s.t. Ex [Cost(f,x)]  C

System Error

Average Acquisition Cost Budget Constraint
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Multi-Stage Decision System (Our work)

fK( )f1( ) f2( )
reject

classify

reject reject

classify classify

cheap/fast 
sensor

slow/costly 
sensor

Assume order of stages/sensors is fixed

Sample: x = [x1 x2 . . . xK ], True label: y

kth stage:

acquires kth feature for a cost δk
fk(xk): full decision with a reject option
xk : first k features of x
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Our Approach

1. Define System Risk: =
∑

k Stage k Risk

Conditioned on: x is still active at kth stage

Stage k Risk =

{
δk+1 , if rejects to next stage

1 , if stage k misclassifies and not rejects

2. Derive Optimal Solution if prob. distr. are given

Dynamic Program
Reduces to single stage optimization if cost-to-go is known

Cost-to-go, δ̃k(xk) = expected risk of later stages +δk+1

0

1
P(y = 1 | xk)

�̃k(xk)

1 � �̃k(xk)

xk-1 reject +1
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Our Approach (con’d)

3. Mimic Optimal Solution in the empirical setting

Given training data with full features:

[ ]..., , , ,

x1 y1 x2 y2 y3 yNx3 xN

At each stage formulate:

Empirical risk
Empirical estimate of cost-to-go

Classifier with reject option

Parametrize in a convenient manner
Reduce to a series of supervised learning problems

Cyclic optimization over one stage at a time
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Alternative approach: single stage design of classifiers

Myopic approach, at each stage k

Reject a constant fraction to next stage
Ignores performance of stages k + 1 . . . K .

Decision at kth stage =

{
classify, confidence ≤ threshold

reject to next stage, confidence > threshold

Our Approach,

Takes the risk of the entire system into account
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Synthetic Example
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Synthetic Example: 1st Stage Classifier
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Synthetic Example: 2nd Stage Classifier
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Synthetic Example: Ours vs. Myopic

Figure : Constant Budget = .3
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(a) Ours: Error = .148
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(b) Myopic: Error = .19

Our approach achieves smaller error for the same budget
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Evaluating Performance

Metrics:

System Test Error = Error of xi ’s classified at 1st stage
+ Error of xi ’s classified at 2nd stage+ ... +
Test Budget=Average Acquisition Cost per xi

Operating Points

Ours: sweep trade-off parameter (error vs cost)
Myopic: sweep fraction rejected at a stage
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Synthetic Example: Error vs Budget

t

Stage Sensor Cost

1 1st dim 0
2 2nd dim 1

For all budgets, our approach has
overall better performance than
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MNIST (UCI)

t

x = Handwritten image of a
digits

y : 1 of 10 digits

Stage Sensor Resolution Cost

1 4x4 0
2 7x7 1
3 14x14 2
4 28x28 3

Full resolution: cost=3

Can achieve full resolution
performance with low resolution

measurements
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Concealed Explosive Detection Data

Standoff images of subjects (people) wearing explosive devices
underneath clothing

Dataset Statistics

# of Samples 1230
Modalities IR, PMMW, AMMW
# of Views 4

Image Size/View 700x400

Several types of threats (vest bombs, etc)

70% threats, 30% clean

Classification objective: is subject concealing a threat?

IR

f1( ) f2( )
reject

classify classify

PMMW

IR

PMMW

AMMW

700 x 400 x 4 views=
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Our Method

front
torso

front
legs

right
torso

right
legs

left
torso

left
legs

back
torso

back
legs

IR
PMMW
AMMW

Descriptors

1 Divide Body into 8 regions
2 Reduce dimensionality per modality

Find a confidence for each region
700x400x4 → 8 dimensional descriptor x 3 modalities

3 Use low dim. descriptor as input to our system

Test our approach using simple pre-processing
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Extract Overlapping Windows

For a window

20 bins of normalized
pixel intensity
compute histogram of
pixel values

AMMW: best differentiator

IR and PMMW: worse
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Descriptor for Each Region

t

1 Learn a window classifier

threat or clean
for each modality: IR,
PMMW, AMMW

2 Evaluate each window in a
region

3 Find connected threat
windows

4 Report the size of the
largest group

Descriptors:
700x400x4 → 8
Input to our system

THREAT

FALSE
ALARMS

group of 6 connected threat 
windows (large size), likely true 

threat location

group of 2 connected threat 
windows (small size)

 likely false alarm
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ROC for varying budget

t

Split dataset: 50% train, 50%
test

x = confidence vector per sensor

y ∈ {Threat,Not Threat}
Better pre-processing will improve
baseline performance

Stage Sensor Cost

1 IR,PMMW 0
2 AMMW 1

IR
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Can achieve near-optimal
performance using expensive

sensor less than half the time!
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Conclusion

Developed a theory for designing non-parametric multi-stage
multi-class classifiers

Can be adapted to extend existing machine learning
approaches

Future Work:

Optimize sequencing of sensors when choice is possible
Explore alternatives

This work appears in:

K. Trapeznikov, V. Saligrama, D. Castañón, Multi-stage
Classifier Design, Asian Conference on Machine Learning, 2012
K. Trapeznikov, V. Saligrama, D. Castañón, Two Stage
Decision System, IEEE Statistical Signal Processing, 2012
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Related Work

Parametric Methods (estimate/model P(x, y) or transition
probabilities P(x1 | x2))

Markov Decision Process:
[Ji and Carin, 2007, Kapoor and Horvitz, 2009]
Decision Tree based: [Sheng and Ling, 2006,
Bilgic and Getoor, 2007, Zubek and Dietterich, 2002]
Entropy Maximizing: [Kanani and Melville, 2008].

Non-parametric methods
Detection Cascades
([Viola and Jones, 2001, Chen et al., 2012])

Partially-Adaptive, reduce acquisition cost for one class
Partial Decisions at each stage
No multi-class extensions

fK( )f1( ) f2( )
+1 +1 +1

-1 -1 -1

+1

Myopic Aproaches ([Liu et al., 2008])
Ignorant of performance later stages
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