X-ray CT-based EDS Research Problems Zhengrong Ying 2012-10-25 ### Conclusion - Next generations X-ray CT-based EDS - * Improved throughputs - Expanded detection regions - * Reduced FA rates - * Lower costs - * Areas for improvements - System Geometries - Object-based Image Reconstruction - Computer Assisted Training - Multi-energy Decomposition ### System Geometries - Existing CT-based EDS - * Rotating CT (RCT) - * Single-helix scanning - * Dual-helix scanning (medical) - * Siemens DSCT - * Larger scanning pitch - Stationary CT (SCT) - * Mimicking RCT geometry - * Sources within X-Y plane - Single- and multi-helix scanning - SCT advantages - Flexible geometry due to many sources (RCT: views) - * Arbitrary source positions (RCT: X-Y rotating plane) - * Arbitrary source firing sequences (RCT: sequentially only) # System Geometries (cont.) #### SCT Example 1 - * Given a belt speed, arrange the sources along the Z axis and firing sequence along the scanning helix direction, resulting in a 2D acquisition mode; - No sampling between slices; - * Data is complete within each slice (2D problem); - * Still an issue for cone-beam data - * SCT Example 2 - Source positioning - * helix + saddle curve [Pack 2004] - Data completeness for 3D cone-beam # System Geometries (cont.) - Most theoretical analysis in CT is in continuous domain - Data completeness condition [Tuy 1983] - * Single Helix [Katsevich 2002] (small pitch) - * Saddle curve [Pack 2004] - Implementation is in discrete domain - * # of sources (views) - * Data completeness in discrete domain? - * Relation to spatial resolution? - * Difficulties - 3D volume sampling - Sampling in polar coordinates (line integral) - * Image in Cartesian grids - * Finite sizes of sources and detectors ### Object-based Image Reconstruction - * Existing EDS - * Single reconstruction - Multi-detection paths - * Thin-object - * Bulk-object - * - * Next-Gen EDS - Multi-reconstruction paths - * Thin-object - * Bulk-object - * Metal - Multi-detection paths # Object-based Image Reconstruction (cont.) - Existing image reconstructions - * Voxel/pixel based - Regularization with smoothness priors - * Maybe good enough for bulk-object reconstruction - Regularization with edge-preserving priors - Not enough for thin-object recon - * Thin object may only have one voxel thick - Continuation property of a thin object is not imposed - Continuation of smooth surfaces of a thin object is not captured - * How to perform reconstruction targeted for thin-objects? - * The most difficult problem for detection and FA rates - Many configurations of thin-objects # Computer Assisted Training - * Most training methods in the literature - * One training stage, then it's done - Not an iterative training process - No feedback into the re-training - Treat all the training samples equally - * No easy interface for humans to understand/interact - * Two CAT problems - Feature dependence discovery - Iterative training process # Computer Assisted Training (cont.) - Feature dependence discovery - * Examples: - Average densities of thin-objects are location/orientation dependent - * Average density of objects depend on the nearby objects along the same beam paths - * How to identify such correlations in a large feature set? - * Help obtain physical explanations of such correlations - * Use the features appropriately to yield the best generalization for discrimination # Computer Assisted Training (cont.) - Iterative training process - Step 1: based on first training data sets, obtain an optimal discrimination algorithm - * SVM, linear, nonlinear, ... - * Start with a low Pfa - * Step 2: based on feedback from testing, obtain targeted samples of misses, re-train the discrimination algorithm with the following constraints - * The detection region monotonically increases - * Detection region in Step 1 is a subset of the updated detection region - Some samples of misses must be detected - Some samples of misses can be missed - * FA rate increase is minimized - * Same global criterion as Step 1 for optimization - Continue till pass the cert # Multi-energy Decomposition - Dual energy decomposition [Alvarez 1976] - * Two terms modeling - * Compton + Photoelectric - * Two measurements - * Multi-energy decomposition - * K-edge effect? - Many metals in the baggage scanning - * Do more than two measurements help improve SNR? - * How much? Any theoretical analysis? - * How to deal with data inconsistence in the measurements? - * What X-ray spectra give an optimal SNR for baggage screening? ### Conclusion - Next generations X-ray CT-based EDS - * Improved throughputs - Expanded detection regions - * Reduced FA rates - * Lower costs - Areas for improvements - System Geometries - Object-based Image Reconstruction - Computer Assisted Training - Multi-energy Decomposition