X-ray CT-based EDS Research Problems

Zhengrong Ying 2012-10-25

Conclusion

- Next generations X-ray CT-based EDS
 - * Improved throughputs
 - Expanded detection regions
 - * Reduced FA rates
 - * Lower costs
- * Areas for improvements
 - System Geometries
 - Object-based Image Reconstruction
 - Computer Assisted Training
 - Multi-energy Decomposition

System Geometries

- Existing CT-based EDS
 - * Rotating CT (RCT)
 - * Single-helix scanning
 - * Dual-helix scanning (medical)
 - * Siemens DSCT
 - * Larger scanning pitch
 - Stationary CT (SCT)
 - * Mimicking RCT geometry
 - * Sources within X-Y plane
 - Single- and multi-helix scanning
- SCT advantages
 - Flexible geometry due to many sources (RCT: views)
 - * Arbitrary source positions (RCT: X-Y rotating plane)
 - * Arbitrary source firing sequences (RCT: sequentially only)

System Geometries (cont.)

SCT Example 1

- * Given a belt speed, arrange the sources along the Z axis and firing sequence along the scanning helix direction, resulting in a 2D acquisition mode;
 - No sampling between slices;
 - * Data is complete within each slice (2D problem);
 - * Still an issue for cone-beam data
- * SCT Example 2
 - Source positioning
 - * helix + saddle curve [Pack 2004]
 - Data completeness for 3D cone-beam

System Geometries (cont.)

- Most theoretical analysis in CT is in continuous domain
 - Data completeness condition [Tuy 1983]
 - * Single Helix [Katsevich 2002] (small pitch)
 - * Saddle curve [Pack 2004]
- Implementation is in discrete domain
 - * # of sources (views)
 - * Data completeness in discrete domain?
 - * Relation to spatial resolution?
 - * Difficulties
 - 3D volume sampling
 - Sampling in polar coordinates (line integral)
 - * Image in Cartesian grids
 - * Finite sizes of sources and detectors

Object-based Image Reconstruction

- * Existing EDS
 - * Single reconstruction
 - Multi-detection paths
 - * Thin-object
 - * Bulk-object
 - *
- * Next-Gen EDS
 - Multi-reconstruction paths
 - * Thin-object
 - * Bulk-object
 - * Metal
 - Multi-detection paths

Object-based Image Reconstruction (cont.)

- Existing image reconstructions
 - * Voxel/pixel based
 - Regularization with smoothness priors
 - * Maybe good enough for bulk-object reconstruction
 - Regularization with edge-preserving priors
 - Not enough for thin-object recon
 - * Thin object may only have one voxel thick
 - Continuation property of a thin object is not imposed
 - Continuation of smooth surfaces of a thin object is not captured
- * How to perform reconstruction targeted for thin-objects?
 - * The most difficult problem for detection and FA rates
 - Many configurations of thin-objects

Computer Assisted Training

- * Most training methods in the literature
 - * One training stage, then it's done
 - Not an iterative training process
 - No feedback into the re-training
 - Treat all the training samples equally
 - * No easy interface for humans to understand/interact
- * Two CAT problems
 - Feature dependence discovery
 - Iterative training process

Computer Assisted Training (cont.)

- Feature dependence discovery
 - * Examples:
 - Average densities of thin-objects are location/orientation dependent
 - * Average density of objects depend on the nearby objects along the same beam paths
 - * How to identify such correlations in a large feature set?
 - * Help obtain physical explanations of such correlations
 - * Use the features appropriately to yield the best generalization for discrimination

Computer Assisted Training (cont.)

- Iterative training process
 - Step 1: based on first training data sets, obtain an optimal discrimination algorithm
 - * SVM, linear, nonlinear, ...
 - * Start with a low Pfa
 - * Step 2: based on feedback from testing, obtain targeted samples of misses, re-train the discrimination algorithm with the following constraints
 - * The detection region monotonically increases
 - * Detection region in Step 1 is a subset of the updated detection region
 - Some samples of misses must be detected
 - Some samples of misses can be missed
 - * FA rate increase is minimized
 - * Same global criterion as Step 1 for optimization
 - Continue till pass the cert

Multi-energy Decomposition

- Dual energy decomposition [Alvarez 1976]
 - * Two terms modeling
 - * Compton + Photoelectric
 - * Two measurements
- * Multi-energy decomposition
 - * K-edge effect?
 - Many metals in the baggage scanning
 - * Do more than two measurements help improve SNR?
 - * How much? Any theoretical analysis?
 - * How to deal with data inconsistence in the measurements?
 - * What X-ray spectra give an optimal SNR for baggage screening?

Conclusion

- Next generations X-ray CT-based EDS
 - * Improved throughputs
 - Expanded detection regions
 - * Reduced FA rates
 - * Lower costs
- Areas for improvements
 - System Geometries
 - Object-based Image Reconstruction
 - Computer Assisted Training
 - Multi-energy Decomposition