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 Detecting internal* explosives in a noninvasive, privacy-preserving manner is 
extremely challenging.  Primary screening goals:  

— Stand-off detection — Penetrate clothing and tissue 
— Fast — Negligible direct medical risk   (e.g. ionizing x-rays from XBS) 
— Throughput — Passenger acceptance 
— PD vs. PFA — Cost  (initial expenditure, personnel, space) 

 How do we handle false alarms (FA) ? 
— Can’t alarm on medical implants (breast, hip, pacemaker…) 

— If you have an alarm, what is the secondary screening (pat-down equivalent)? 

 Extending existing techniques is difficult due to physics constraints.  For 
example, in MMW imaging: 

  lateral resolution ≈ 1 / penetration depth 

 Non-imaging modalities do penetrate, but must operate in a much more 
cluttered and noisy environment 

Summary 

*Internal = Implanted, Ingested or Inserted 
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“Security officials see renewed interest in implanted explosives” 
- CNN, July 6, 2011 

“Officials watch for terrorists with body bombs on US-bound planes” 
- ABC, April 30, 2012 

Possible threat scenarios 
 Implanted –  

• Penetrate skin to the fatty subcutaneous layer 

 Ingested / Inserted –  
• Penetrate skin, fat, & muscle to the internal organs 

The medical problem is similar… but different 
 Patients are sick and seeking a diagnosis:  cooperative, compliant, tolerant 
 Passengers are NOT:                                  risk-averse, privacy-conscious 

 
 

Need: Detect explosives internal to humans 
in a minimally invasive manner 

http://articles.cnn.com/2011-07-06/us/bomb.implants_1_human-bomb-behavior-detection-officers-airport-security?_s=PM:US 
http://abcnews.go.com/Blotter/officials-fear-terrorists-body-bombs-us-bound-planes/story?id=16245827 
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The possible measurement spectrum is extremely wide 
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Modal analysis using low-frequency, non-imaging 
techniques can penetrate and partially localize, but 
implant identification is extremely complex 

Non-imaging modalities are 
not well studied, and difficult 

 Interrogation could use an 
instrumented turnstile/saloon 
door and floor pad. 

 Frequency range depends on 
medium 
• Electromagnetic: 1 – 1000 MHz  

 Body treated as a frequency-
dependent waveguide 

 The transmitted waveform is 
compared against models & 
prior measurements 

Base Model with Input Base Model 

Low Speed Object 
 in Right Leg Right Leg Output 
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Microwave to Millimeter wave Imaging 
 Radio (λ0= 300 – 15 mm, 1 – 20 GHz ) 

• Able to penetrate to subcutaneous region 
• Lateral resolution is poor, resolution ≈ λ0 

 MMW (λ0= 15 – 1 mm, 20 – 300 GHz) 
• High first surface reflection, Rskin ≈ 70% – 95% 
• Penetration limited to epidermis (1 mm) 
• Possibility of detection surface changes from implant (incision, 

protrusion), but unable to interrogate material 
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Proceedings of SPIE In Optics East 2005, Vol. 6007, No. 1. (09 November 2005), pp. 60070L-60070L-12, doi:10.1117/12.630004 
http://www.sds.l-3com.com/images/product-provision-L-3%20composite%20300dpi.jpg 
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http://dx.doi.org/10.1117/12.630004
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Mid infrared to visible 
 

 Mid Infrared (3-15 µm ) 
• Absorption-dominated coherent 

penetration depth (λp) is shallow (<100 µm) 
• Thermography 

— Static measurements detect inflammation 
— Dynamic measurements detect blood flow 

 Near infrared (700 – 2000 nm) 
• Near IR “window” where λp< 500 µm  
• Optical Coherence Tomography (OCT) 

able penetrate for several mm 

 Visible infrared (300 – 700 nm) 
• Scattering dominated, λp < 100 µm 

E F J Ring and K Ammer 2012 Physiol. Meas. 33 R33 doi:10.1088/0967-3334/33/3/R33 

All of the above methods require direct imaging of the skin.   
Clothing: 

• Attenuates the  signal by 10 – 20 dB per pass 
• Masks and homogenizes surface temperature variations 

http://dx.doi.org/10.1088/0967-3334/33/3/R33
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X-rays can penetrate and localize, but are 
biologically harmful in significant doses 
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 http://www3.gehealthcare.co.uk/~/media/DiscoveryMR750w_
3-0T_whole_body_clinical.jpg  

 http://www.rupture.co.uk/Images/big/terminal4-LARGE.jpg http://www.tsnk-lab.com/content/view/78/3/ 

<0.05 µSv <0.25 µSv ~8,000 µSv 30 µSv 

Seattle to New York, one-way 
http://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/0316.pdf 
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 Nuclear resonance 
• With applied magnetic field: NMR / MRI 
• Without applied mag. field: NQR (ADSA 03) 

 

 Electromagnetic induction 
• Sense the metallic initiator components 

 

  Cosmic radiation 
• E.g., muons, electrons 

Additional Modalities 
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 Extending existing techniques is difficult due to physics constraints.  For 
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