

A Math Perspective on Fusion Needs

KEN JARMAN, NAT BEAGLEY, DALE HENDERSON, TIM WHITE

Pacific Northwest National Laboratory ADSA08 Workshop, October 24-25, 2012

Conclusions

Proudly Operated by Battelle Since 1965

- Need to study a variety of ATR fusion "models" (fuse at what step?)
 - "Deep" access to information produces better fusion—system developers need to study how much better, at what cost, what is feasible for specific system
- DHS S&T programmatic strategy is needed to evaluate and prioritize concepts for ATR fusion research investments
 - Define the **task**: problem space (threats, interferents, environments, ...) and evaluation space (measures of performance and effectiveness, ...)
 - Define standardized test scenarios and (large) data collections for fused system concept development, training, and evaluation
- DHS lab/industry/academia student incubators help solve "fusion challenge problems" with practical implications for explosives detection

Example Multi-Sensor System

Proudly Operated by Battelle Since 1965

- Notional footprint-saving fusion example
- Consider mm-wave and metal detection
- Signatures
 - mm-wave: shape and dielectric constant
 - Metal detector: conductivity
- Task: detect explosives on person
 - Neither system directly sensitive to explosive material
 - Potential correlations in TP and FP spaces

Modality	Plastic on Surface	Metal on Surface	Metal Below Surface
mm-wave	TP, FP	TP, FP	-
Metal Detector	-	TP, FP	FP

Detection Sensitivity and Specificity = Greater Separation in Feature Space

Proudly Operated by Battelle Since 1965

Increasing separation via complementary ("orthogonal") technology

More realistic classification problem

Good fusion needs "deep" info sharing

Proudly Operated by Battelle Since 1965

Increasing:

Information
Sharing
(and Info
Security)
--DICOS/DSFP?

Fusion
Performance
(and Fusion
Complexity)

- ► Fixed P_D/P_{FA} for each sensor
- ROC curve for each sensor
- ROC curves plus correlation (modeled/estimated)
- Feature data/score, each sensor
- Feature data plus correlation (modeled/estimated)
- "Raw" data (only if fusion system developers are also experts at extracting features from the data)

Good fusion needs "deep" info sharing

So "ROC beats P_D/P_{FA}, features beat ROC, 'raw' data beats features" (maybe), and neglecting potential correlation can lead to over-

Complementary Technology Programs

Proudly Operated by Battelle Since 1965

Value:

- The combination of signals through fusion algorithms or human interpretation can provide higher performance than the information provided by these signals taken independently.
- Conditions for Success:
 - Why and how is it anticipated that this solution will potentially improve system effectiveness?
 - Can the benefits of the solution be demonstrated on paper with synthetic or notional data against concrete measures?
 - How can we measure the impact of the solution in performance (MOP) and effectiveness (MOE)?
 - What is the TRL of this solution, and what is the plan to bring it to an operational level TRL?
 - What are the implications of the solution for the operational environment or under operational constraints?

Complementary Tech Program Spaces

Proudly Operated by Battelle Since 1965

Problem Space

Threat & Materials
Operational Conditions
Scenarios & Test Conditions

Solution Space

Approaches & Systems
Orthogonal Concepts
Prototype through
Deployment

Evaluation Space

Intersection between problem and solution Generates performance and effectiveness data

Data Space

Test Results
Test Cases

DHS S&T shares these spaces with strategic partners & key contributors. These spaces contain the elements of a research program strategy.

DHS/S&T EXD Student Incubator Projects 2012

Proudly Operated by Battelle Since 1965

A collection of projects focused on the mathematics of data fusion

Alex Venzin
 Mentor: Mark Oxley
 Air Force Institute of Technology

ROC Curve Algebra

 Formal basis for augmenting a current system to achieve a desired system performance

Target fused performance

"minus" current \rightarrow new sensor req

2) Matt Higger

Mentor: Deniz Erdogmus Northeastern University

Fusion Robust to Sensor Failure

- Learning failed sensor characteristics; generating

3) Claire Longo

Mentor: Dale Henderson (PNNL)
University of New Mexico

Fusion sandbox library

- Numerical tool for exploring fusion concepts (incl. correlation and sensor failure)

Conclusions

Proudly Operated by Battelle Since 1965

- Need to study a variety of ATR fusion "models" (fuse at what step?)
 - "Deep" access to information produces better fusion—system developers need to study how much better, at what cost, what is feasible for specific system
- DHS S&T programmatic strategy is needed to evaluate and prioritize concepts for ATR fusion research investments
 - Define the **task**: problem space (threats, interferents, environments, ...) and evaluation space (measures of performance and effectiveness, ...)
 - Define standardized test scenarios and (large) data collections for fused system concept development, training, and evaluation
- DHS lab/industry/academia student incubators help solve "fusion challenge problems" with practical implications for explosives detection

Proudly Operated by Battelle Since 1965

Additional Slides: OT Strategy

Example Multi-Sensor Systems

Proudly Operated by Battelle Since 1965

- Consider x-ray CT and IR imaging
- Signatures
 - CT: shape, density, Z_{eff}
 - IR: contamination of surface with explosive residue
- Task: detect explosives in bag
 - Presence of contamination may not be correlated with bulk explosives

modality	Bulk Explosive	Residue on Surface
X-ray CT	TP, FP	-
IR Imaging	-	TP, FP

Strategies for Complementary Technology

Sponsored by DHS S&T Explosives Division Focused on baggage and checkpoint screening for explosives

Objectives

- Develop strategies for research in complementary technologies
 - Based on mathematical arguments and issues
 - Frame programmatic strategy for evaluating systems
- Initiate and oversee student "incubator" projects
- Outcomes: Briefing and two reports with recommendations pertinent to researchers, vendors, and funding agencies

Proposed Definitions

Proudly Operated by Battelle Since 1965

- A signature is a unique or distinguishing measurement, pattern or collection of information that indicates a phenomenon (e.g. object or event) of interest.
- A technology in this context is a practical application of knowledge, or a capability provided by such application of knowledge.
- A **sensor** is a type of technology that transmits information in response to a stimulus.
- ► **Fusion** in this context is the combination of output from multiple technologies to predict or estimate a potential threat state (e.g. presence of an object consistent with a type of threat).
- ► Technologies may be considered (partially) **complementary** if they either provide information related to different signatures of the same target object or are sensitive to different classes of target objects.

Orthogonality, Correlation, Independence

Proudly Operated by Battelle Since 1965

- Mathematical definitions:
 - Let X and Y be random variables (e.g. a spectral peak intensity from trace detection and density from CT)
 - Then X and Y (and corresponding technologies) are
 - Orthogonal if E[XY] = 0
 - Uncorrelated if E[XY] E[X]E[Y] = 0
 - Linearly independent if Y ≠ a + bX for some scalar a, b
 - Independent if P[X<x and Y<y] = P[X<x]P[Y<y]</p>

- BUT it's conditional orthogonality/"uncorrelatedness"/independence that concerns us
 - e.g. E[trace peak intensity x density | threat present] = 0

Fusion

Proudly Operated by Battelle Since 1965

- Categories
 - Combining sensor/classifier output directly
 - Primary/secondary
 - Adaptive; one sensor's output modifies operation or parameters of second
- Basic techniques
 - Heuristic/rule-based; voting
 - Pattern recognition
 - Bayesian, Dempster-Shafer, etc.
 - Hybrids
- Levels
 - ("raw") data fusion
 - Feature fusion
 - Classifier fusion
 - Decision fusion

Fusion Research and Data Needs

Proudly Operated by Battelle Since 1965

- DoD Wisdom
 - Fusion framework elements
 - Fusion methodology
 - Categorized "pitfalls"

Examples informing research/data needs

Proudly Operated by Battelle Since 1965

- Feature fusion beats decision fusion
- Ignoring (conditional) correlation is dangerous
- "Doubled" sensors provide a fusion performance baseline
 - Combining results of two "i.i.d." sensors observing the same object improves performance, so any fused system should at least beat that (subject to cost, operational constraints)
- The "inverse" problem
 - Fusing current system with a new sensor, what new sensor performance is needed to boost from current system performance to a specified fused system performance
- The certification "gaming" problem
 - Achieving overall certification by gaming individual sensor performance