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Summary 

Fusion of multiple sensors expands the measurement space 
of a detection system, and thus provides the potential for 
enhanced sensing capabilities. 
 
However, such enhancement is not guaranteed, and it is 
important to keep in mind that selectivity of multisensor 
systems is highly context-dependant. 
 
It is possible to estimate best case fused system potential 
performance gains through an understanding of the 
performance characteristics of component sensor systems. 



Target Analytes 

TNT RDX Tetryl HMX 

PETN NG EGDN TATP 

Ammonium Nitrate Potassium Perchlorate 



Analyte Properties 

arom NO2 -N- 
NO3 

ester 
-O-O- salt VP /atm 

MP 
C 

MW 

TNT x x3 10-9 80.35 227.13 

Tetryl x x4 x1 10-13 129.5 287.15 

RDX x3 x3 10-11 205.5 222.12 

HMX x4 x4 10-14 276 296.16 

PETN x4 10-11 141.3 316.14 

NG x3 10-6 14 227.09 

EGDN x2 10-5 -22 152.1 

TATP x3 10-6 91 222.2 

NH4NO3 x 10-8 169.6 80.052 

KClO4 x - 525 138.55 

Low 
volatility 

 
 
 
 
 

Semi- 
Volatile 

 
 

Salts 



Motivation for Multisensor Approach 

To leverage unique sources of information from multiple 
sensing modalities to provide more accurate assessment 
than possible with single sensors.  
 
- Reduction of false positives (enhanced selectivity) 
- Improved detection of target analytes (enhanced 

sensitivity) 
- Capability to detect a wider range of target analytes 
 



“Unique sources” of information 

1) Sensors that detect different target analytes 

2) Sensors that detect the same analytes, but with… 
• Different performance characteristics 
• Different statistical properties 
• Different output data format/ sensing modality 

3) Sensors that provide information that aides in target analyte 
assessment (but do not directly identify it) 

• Detects potential interferant compounds for another sensor 
• Classifies target analyte as separate from other compounds 
• Provides meta information about performance of other sensors 

Fused systems consisting 
entirely of COTS 
explosive detectors 

Fused systems with 
context-dependant, 
non target-specific 
sensors  



MobileTrace  
(Morpho Detection) 

Multi-Mode Threat Detector 
 (Smiths Detection) 

Quantum Sniffer QS-H150 
 (Implant Sciences Corp.) 

Current Landscape 

Fido Verdict (ICx Technologies) 

Hazmat ID Ranger  
(Smiths Detection) 

FirstDefender RM  
(Thermo Scientific) 

TrueDefender FT/FTG  
(Thermo Scientific) 

zNose Model 4500 
(Electric Sensor Technology) 

NevadaNano Self Sensing Array 
(Nevada Nanotech Systems, Inc.) 

EVD 3000+ 
(Scintrex) 

E3500 Chemilux 
(Scintrex) 

Fido PaxPoint (ICx Technologies) 



Current Landscape 

Chemical Reactivity 
Electrochemical sensors 
Fluorescence Quenching 
Chemical Luminescence 
Colormetric sensors 

Spectroscopic 
FTIR:  vibrational structure 
Raman: vibrational, rotational structure 

Spectrometric 
IMS:  molecular size and shape 
MS: molecular size, fragmentation 

Chemical Adsorption 
Surface Acoustic Wave (SAW) 
Micro cantilever (MEMS) 



Sensor Modalities 

Binary-valued output (detect vs no detect) 
 
Continuously valued scalar output (absorbance at one λ) 
 
Vector output (spectrum) 

Measurement space of the fused system is the outer 
product of the output space of each component. 



Multisensor System Design 

What are the requirements? 
target compounds 
potential interferants 
operating conditions 

 
What sensors will be used? 
multiple COTS detection technologies 
augment one or more COTS systems with additional sensors 
new sensors, purpose built for fused data systems 
 

How will an output decision be derived from data? 



Detection and Decision Theory 

Detection of an analyte is a decision that is made on the basis of 
measured sensor data. 
 
Decision theory:  arrive at an optimal decision, given observable 
evidence and knowledge of the statistical distributions. 
 
Ability of a sensor (or multisensor system) to detect an analyte rests 
on the distribution of sensor responses observed when the analyte is 
present and when it is not. 
 
Adding or removing sensors, incorporating other compounds and 
interferences, and varying the amount of each present will alter these 
distributions, leading to changes in the system’s detection ability. 
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ROC curves 

Progressively greater similarity between 
analyte and non-analyte distributions 
leads to worse detection capability at 
Bayes Optimal limit. 



System Performance Measures 

Sensitivity – reflected in the functional 
dependence of PD with 
analyte concentration  

P(Detect|Interferant) = P(Detect) Full Selectivity 

P(Detect|Interferant) = P(Detect|Analyte) Non-Selective 

P(Detect|Interferant) ≠ P(Detect) Partial Selectivity 

Selectivity – the statistical independence (or lack thereof) of sensor 
response in the presence of non-analyte species 
(interferants) 

Concentration 

PD 

How do individual sensor performance characteristics contribute to 
overall fused system performance? 



Multisensor Detection 

A fused system can be visualized as a series of 
measurements made on the same sample 
 
This system has a characteristic measurement space that 
contains every possible collection of sensor responses 
that the system can generate 
 
Conditional probability distributions in this space describe 
the system’s response to analytes, interferants, etc. 
 
The separability of these distributions indicates how 
difficult the detection challenge will be.  (Bayes Optimal 
classifier provides best possible performance) 



Measuring Selectivity 

Area Under ROC (AUC) KL Divergence 

0.5 < Sensor 1 < Sensor 2 < 1 
             AUC            AUC 

KL Divergence provides a measure of 
the difference between two probability 
distributions, H1 and H0 

Perfect  
Detection 

PFA 

P
D

 

ROC summarizes tradeoff between PD 
and PFA for a give sensor.  Area under 
the ROC varies between 0.5 and 1 

0 < Sensor 1 < Sensor 2 
          DKL               DKL  

Complete 
Overlap 

H0 H1 

sensor 1 
sensor 2 

Coin 
Flip 
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Example: “Black Box” Binary Sensors 

Suppose one has a collection of binary output sensors with 
known, fixed probabilities of detection and false alarm. 
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5 Identical Sensors  

(PD=0.80, PFA=0.20)  
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ROC curve for a fused sensor system with eight component sensors with 
random PD and PFA values.   Dots represent possible performance regimes 
for the fused system.  The circles depict the PD and PFA values associated 
with each of the eight component sensors.  
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8 component sensors, random PD and PFA values 

Example: “Black Box” Binary Sensors 

Decision Fusion (blue) 

Component Sensors (red) 

0.7 < PD < 0.9 
0.1 < PFA < 0.3 
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ROC curve for the fused sensor system shown in Figure 4, with one low-
performing sensor removed. 

P
D

 

PFA 

Same, but lowest performing sensor removed 

Example: “Black Box” Binary Sensors 

Decision Fusion (blue) 

Component Sensors (red) 
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ROC curve for the fused sensor system shown in Figure 5, with one lower-
performing sensor added in with PD=0.6 and PFA=0.33. 
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Same 7 sensors, add low performing sensor PD=0.6 and PFA=0.33 

Example: “Black Box” Binary Sensors 

Decision Fusion (blue) 

Component Sensors (red) 
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ROC curve for the fused sensor system shown in Figure 5, with one higher-
performing sensor added in with PD=0.97 and PFA=0.01. 
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Same 7 sensors, add high performing sensor PD=0.97 and PFA=0.01 

Example: “Black Box” Binary Sensors 

Decision Fusion (blue) 

Component Sensors (red) 



Example: Binary vs. Univariate Sensors 
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ROC curves for a fused sensor system 
with two component univariate sensors.    

Sensor 1 = circles (red) 

Sensor 2 = squares (red) 

Sensor 3 = triangles (red) 

Decision Fusion (blue) 

Sensor Fusion (green) 

Example: Binary vs. Univariate Sensors 
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ROC curves for a fused sensor system 
with three component sensors.    

Sensor 1 = circles (red) 

Sensor 2 = squares (red) 

Sensor 3 = triangles (red) 

Decision Fusion (blue) 

Sensor Fusion (green) 

Example: Binary vs. Univariate Sensors 
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Example: Partially Selective Arrays 

Consider a hypothetical array of 5 sensors and 5 potential analytes 

analyte conc. 

1 1 

2 1 

3 1 

4 1 

5 1 

ref. response factor 5 5 5 5 5 

measurement error 0.25 0.25 0.25 0.25 0.25 

background signal 0 0 0 0 0 

sensor number 1 2 3 4 5 

relative response factors 

0.97 0.27 0.14 0.91 0.77 

0.87 0.02 0.64 0.16 0.23 

0.25 0.21 0.54 0.31 0.61 

0.92 0.52 0.53 0.40 0.82 

0.63 0.88 0.35 0.25 0.46 

Captures the fundamental 
selectivity of sensor array 

Sensor sensitivities 

Sensor measurement error 

Sensor background response 

Analyte concentrations 
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blank 

background 
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Low false alarms, but  
high misclassification 

High false alarms, but 
Low misclassification 

Example: Partially Selective Arrays 
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System Design Considerations 

Define the scope of the sensing scenario 
 
Individual sensor performance characteristics 
 
Sensor modality, local data processing steps 
 
Sensor response distribution estimates 
 
Modes of interference 



Summary 

Fusion of multiple sensors expands the measurement space 
of a detection system, and thus provides the potential for 
enhanced sensing capabilities. 
 
However, such enhancement is not guaranteed, and it is 
important to keep in mind that selectivity of multisensor 
systems is highly context-dependant. 
 
It is possible to estimate best case fused system potential 
performance gains through an understanding of the 
performance characteristics of component sensor systems. 
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Implications of Multisensor Approach 

Adding sensors increases the size of the measurement space 
 
This provides the potential for greater separability between 
analytes, as well as detection of a wider range of analytes 
 

BUT 
 

Estimation of conditional probability distributions rapidly 
becomes more complicated as the dimensionality increases 



Spectrometric 
IMS:  molecular size and shape 
MS: molecular size, fragmentation 

IMS is the current leader in explosives detection technology, 
demonstrating sensitive detection of multiple analytes.  
 
Can be prone to high false alarm rates due to interferants.   
 
MS has the potential to be highly selective and sensitive, but is 
difficult to make portable and retain high performance. 

MobileTrace  
(Morpho Detection) 

Multi-Mode Threat Detector 
 (Smiths Detection) 

Quantum Sniffer QS-H150 
 (Implant Sciences Corp.) 

Identifying Compounds 



Spectroscopic 
FTIR:  vibrational structure 
Raman: vibrational, rotational structure 

Spectral information lends potentially high selectivity for multiple 
analytes, but devices generally suffer from low detection limits.   

Fido Verdict (ICx Technologies) 

Hazmat ID Ranger  
(Smiths Detection) 

FirstDefender RM  
(Thermo Scientific) 

TrueDefender FT/FTG  
(Thermo Scientific) 

Identifying Compounds 



Chemical Adsorption 
Surface Acoustic Wave (SAW) 
Micro cantilever (MEMS) 

Selectivity dictated by specificity of the interaction between the sensor and the 
analyte.  Could require multiple devices for detection of a wide range of 
analytes.  Miniaturized sensing elements suggest potential for incorporation in 
portable devices 

zNose Model 4500 
(Electric Sensor Technology) 

NevadaNano Self Sensing Array 
(Nevada Nanotech Systems, Inc.) 

Identifying Compounds 



Generally tailored to a specific class of compound, rather than multiple analyte 
classes, can be prone to drift or difficult interpretation of results.  Multiple 
sensors would be required for a wide range of analytes, but a limited number 
could be useful as a means to augment multi-analyte detectors to improve 
false alarm rates. 

EVD 3000+ 
(Scintrex) 

E3500 Chemilux 
(Scintrex) 

Fido PaxPoint (ICx Technologies) 

Chemical Reactivity 
Electrochemical sensors 
Fluorescence Quenching 
Chemical Luminescence 
Colormetric sensors 
 

Identifying Compounds 



Modeling Multisensor Systems 

• Use known performance characteristics and 
library data from individual sensors 
 

• Model sensor responses to different detection 
scenarios 
 

• Combine synthetic data streams to model 
multisensor system response 
 

• Test and validate multisensor system performance 
metric and analysis algorithms 



Univariate Sensor Data 
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H0 – background 

H1 – analyte present 

Single channel sensors such as SAW, MEMS, etc.  
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Synthetic Data Generation Example 
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Additive interference Competitive interference 

Inhibiting interference 
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Modes of Interference 

The shape of the distribution  of 
P(x|A,I) will depend on the 
particular mode of interference 

The presence of an interferent alters 
the distributions P(x|H0) and P(x|H1), 
and thus alters detector performance 



Example: Partially Selective Arrays 

Selectivity is concentration dependant, but an array of sensors 
can enable improved selectivity at a range of concentrations. 
 
There is a trade-off between detection and false alarm rates for 
multi-species detection in sensor arrays as individual sensor 
selectivity is increased or decreased. 
 
An array of purpose-built, but still partially selective sensors can 
have capabilities for detecting new analytes. 
 
More accurate estimates for real sensor parameters will 
improve fused system performance predictions. 


