

Video Analytics and Anomaly Detection

Venkatesh Saligrama Boston University http://iss.bu.edu/srv

Video Analytics & Anomaly Detection Conclusions

- Known Spatial & Temporal Pattern Detection
 - Anomaly Detection: Counter-Flow Detection
 - 100% Detection, 0 False Alarms on Cleveland Airport System
 - Forensic Search
 - 1000X Compression, Computation scales with #matches
 - Logan Airport ~ current 30 day backup. Potential for significant improvement
- > Unknown Spatio-Temporal Pattern Detection
 - Anomaly Detection
 - Useful for suspicious movement, large crowd; unpredictable behavior
 - Forensic Search
 - Efficient techniques for unusual unknown pattern search in large video archive with limited input.
- > Many other applications share this framework
 - Explosives Detection with Fluorescence Sensors

Autonomous Video Surveillance

Networked Cameras are Everywhere

Information Overload

Computation Overload:

Most video footage stored but rarely analyzed.

Storage Overload

At Logan Airport: about 30 days of footage stored

Common Framework: Space-Time Feature Based Algorithm

> Approach applies to other domains

Known Spatial-Temporal Patterns

Counter-flow direction.

Joint project with DHS , Cleveland-Hopkins Airport and ALERT.

Metrics:

Real-time with multiple cameras, 100% detection rate, low false alarms.
Replicate conditions of Cleveland Airport

□ Challenges:

□ False Alarms: Waving hands/legs, Camera noise, Occlusion and clutter

Approach: low-level features (tracklets) across space-time

Performance/Results

Experiment:

- Replicated conditions of Cleveland Airport including video encoders, processors, memory, etc.
- * 10 cameras processed simultaneously for 18 hours in real-time.
- Examined 7.5 hours of video containing 2800 people and 70 counter-flow events.
- Senerated 100% detection, 0 false alarm.

Current Work: Fusion of multiple cameras to reduce false alarms

UNIVERSITY Searching for Known Patterns in Video Archive

Motivation: Forensics

> Challenges:

- Data Deluge:
 - days, weeks or months of video (Tera, Peta, exa bytes of data
- Storage Overload:
 - Logan Airport: 30 day backup
- Computational Overload
 - Archive data not pre-processed

> Goals:

- Efficient search
 - Time scales with # events (not length of video). Do not want to process archive!!
- Improve storage
 - Can we go back 300 days instead of 30 days?

Castanon - S, ACM Multimedia 2012

How to describe what to look for?

- Video Forensics
- Flexible Queries
 - Unusual Events
 - U-turns, turnstile hoppers
 - Usual Events
 - Person going from Point A to B

BOSTON UNIVERSITY Searching for Known Patterns in Video Archive Low-level local features

Results on Benchmark Video Archive

Task	Video	Search query	Features	Video size	Index size
1	Winter driveway	black cat appearance	color and size	$6.55~\mathrm{GB}$	147 KB
2	Subway	people passing turnstiles	motion	$2.75~\mathrm{GB}$	2.3 MB
3	Subway	people hopping turnstiles	motion	$2.75~\mathrm{GB}$	2.3 MB
4	MIT Traffic	cars turning left	motion	$10.3~\mathrm{GB}$	$42 \mathrm{MB}$
5	MIT Traffic	cars turning right	motion	$10.3~\mathrm{GB}$	$42 \mathrm{MB}$
6	U-turn	cars making U-turn	motion	$1.97~\mathrm{GB}$	13.7 MB
7	U-turn	cars turning left, no U	direction	$1.97~\mathrm{GB}$	13.7 MB
8	Abandoned object	abandoned objects	size and persistence	682 MB	$2.6 \mathrm{MB}$
9	Abandoned object	abandoned objects	size, persistence and color	$682 \mathrm{MB}$	$2.6 \mathrm{MB}$
10	PETS	abandoned objects	size and persistence	$1.01~\mathrm{GB}$	$5.63~\mathrm{KB}$
11	Parked-vehicle	parked vehicles	size and persistence		

Video duration	Ground truth	Returned	Ground truth	True positives		False negatives		Lookup	Ranking
	(minutes)	(minutes)	(events)	(events)		(events)		(seconds)	(seconds)
4 hours 13 min	2.5	3.8	3	2	—	1	—	7.49	2.50
1 hour 19 min	19.0	15.3	117	116	114	1	121	0.33	0.35
1 hour 19 min	0.9	4.5	13	11	1	2	33	3.05	1.01
1 hour 32 min	4.9	14.4	66	61	6	5	58	0.38	3.50
1 hour 32 min	13.2	27.9	148	135	54	13	118	0.47	2.63
3 min 24 sec	0.5	0.5	8	8	6	0	23	1.23	1.21
3 min 24 sec	0.4	0.4	6	5	4	1	14	0.61	0.40
13 min 47 sec	4.6	3.7	2	2	—	0	—	4.82	0.22
13 min 47 sec	4.6	4.2	2	2	—	0	—	13.33	0.20
7 min 8 sec	3.7	2.3	4	4	—	0	—	?	?
32 min	17.2	16.0	14	14	—	0	—	?	?

Detecting Unknown Unusual Patterns

- > Location-based attributes
 - highly correlated in space-time-feature space
- Learn Global Joint Space-time-Feature Model
 - Topic Modeling, MRFs, Mixture models, Sparse Dictionaries (Wang'10,Kim'09,Mahadevan'11, Cong'11, ...)
- > Main Drawback with Global Models
 - Nominal behavior is too complicated

S- Zhao (AISTATS'12)

Our Key Insight: Local Anomaly Model

- > Ball of radius R centered at v
 - $B_u = \{ u \mid d(u, v) \le R \}$
 - Marginals outside equal

$$f_u(\mathbf{X}_{B_u^c}) = f_0(\mathbf{X}_{B_u^c})$$

- Video Implication:
 - features have same joint distribution outside some patch
 - Cannot see anomaly from features outside region

C Creckpoint Exit 4 DECAZOIIZ 12:31:04

Video Anomaly Detection Based on Local Statistical Aggregates

Detection of Explosive Analytes with Fluorescence Sensor

- Bill Euler (URI)
 - Sensor Array
 - "Fingerprint"
- Pure Explosive
 - Known pattern
- Explosive mixtures
 - unknown patterns
 - Sparse patterns
 - Poisson Statistics
- > Solution:
 - Non-linear Compressed sensing
 - Novel Extensions to existing literature
 - Optimal algorithms

Video Analytics & Anomaly Detection Conclusions

- > Known Spatial & Temporal Pattern Identification
 - Anomaly Detection
 - 100% Detection 0 False Alarms on Cleveland Airport System
 - Forensic Search
 - 1000X Compression, Computation scales with #matches
 - Logan Airport ~ current 30 day backup. Potential for significant improvement
- > Unknown Spatio-Temporal Pattern Identification
 - Anomaly Detection
 - Useful for suspicious movement, large crowd; unpredictable behavior
 - Forensic Search
 - Efficient techniques for unusual unknown pattern search in large video archive with limited input.
- > Many other applications share this framework
 - Explosives Detection with Fluorescence Sensors