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Conclusions

» Explosives-related sensory data are often under
uncertainties: noises, cross-modalities, lack of training
samples, large-scale data, over-fitting of models, etc.

» Low-rank analytics crates a promising algorithmic
tool set to mitigate these uncertainties.

» Low-rank analytics based transfer learning, manifold
earning, and subspace learning are demonstrated to
be effective feature extraction methods of ATR.
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Explosive Detection, Many Ways

» Explosive detection --- A non-destructive inspection
process to determine whether a container contains

explosive materials

» Many possible ways to approach

Mechanical
scent detection

Explosive
detection

Northeastern
University

X-ray machines



Multi-Sensor Cross-Modality Problem

» Data source:

Sense of
smell of

Images from

X-ray
images

different
spectrals

dog

» Sensor: CT, , MMW, Trace, QR, XRD, Fused system

» How to better use multi-sensor cross-modality data?
» Noise/outlier(anomaly) detection
» Feature selection

One source of data is easily acquired for
LUV G-EROCINETE training, but not applicable in test, while
another source of data is opposite. Can we
_______________________________________________ transfer the knowledge from the former to
< the latter?



Knowledge Transfer in Machine Learning, A
Typical Scenario

Political,

Unknown,

Sports, different

Military,...

Unknown,

Knowledge transfei e different
(//,7 (o4

A few labeled
Web documents

One source of easily = & One source of
acquired explosive explosive detection
detection data ~h N data in practical use



Why Transter?

» One common assumption in classification problems is the
training/testing consistency of the data.

» This cannot be always satisfied, especially in complex
applications common in many areas:
web document classification,
sentiment analysis,
image annotation,
face recognition.

» How to apply previous well-labeled data to a huge amount of
unseen data with possibly different distributions?

» The correct way might be using only a few data in the
source domain within an appropriate subspace to
reconstruct a specific target data, as shown in the above
figure.
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Our Contribution

m n
A |
d, — dimension of high-
dimensional space
d, — dimension of low-
d,- Xs X e
1™ dimensional space
. ' ' X, —data in source domain
High-Dimensional
Feature Space X, —data in target domain
@ Shared Suhspace@ P — projection matrix
F'EOW'Ra”k m,n — number of samples
B epresen-
d2 4 tation ~ where m» n
Coefficients Z — low-rank coefficient
T T matrix
PTX, Z PTX,

» Contributions

A novel method for transfer learning via low-rank

representation, which we call low-rank transfer subspace
learning (LTSL).
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Problem Formulation

a—--~So.urce Domain | Target Domain

( ...
\...’
’

>t\

—---Seurce Domain ' Target Domain

» A given data set is seldom well described by a single subspace, rather,
data are more likely lying in several subspaces.

> Suppose we adopt source data to linearly represent target data to
achieve the purpose of knowledge transfer.

» For over-complete source data that span the entire feature space,
however, we could always obtain trivial solutions.

» The correct way might be using only a few data in the source domain
within an appropriate subspace to reconstruct a specific target data,
as shown in the above figure.
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Problem Formulation
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(a) (b)

» In the original data space, the mapping between source and
target domain are not necessarily the best!

» Extreme case in above figure is blue points in (a) are hardly
represented by green ones

» We consider the knowledge transfer in some subspace
spanned by P, plus an error term E, where mapping are clearly
shown in (b)

P,Z, F = argmin F(P, X;) + rank(Z) + A|| F||2.1,
P.Z.E
st.. P'X, =P X, Z + F.
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Solution and Results

» The former problem can be solved by augmented
Lagrangian multipliers (ALU).
» Experiment |, synthetic data

Two classes in the source domain, each class has 100
samples!

Two classes in the target domain, each class has 30 samples!

Mess target data in figure (left) are now separable in figure
(middle) by mapping them to corresponding source data.
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» Experiment 2, : Kinship verification, UB KinFace database

Experimental Results

BEST RESULTS AND DIMENSIONS OF KINSHIP VERIFICATION.

Method PCA SLPP ULPP SNPE UNPE MFA DLA
No Transfer | 53.08%(11) | 55.00%(9) | 57.74%(11) | 53.26%(9) | 54.26%(21) | B2.74%(17) | 54.74%(35)
TSL FA.78%(25) | 54.02%(3) | BA.02%(11) | 50.74%(9) | 53.26%(9)

52.24%(3)

53.98%(39)

Our Method

56.577(19)

57 17%(17)

63.72%(11)

54.60%(11)

58.807(3)

54.50%(35)

55.007(33)

» Experiment 3: Face recognition, from Yale B to CMU PIE

BEST RESULTS AND DIMENSIONS OF PROBLEM Y 2P.

Method PCA SLPP ULPP SNPE UNPE LDA MFA DLA
No Transfer | 28.6%(80) | 80.7%(80) | 78.3%(80) | 78.6%(80) | 73.1%(80) | 75.4%(35) | 78.1%(35) | 74.1%(30)
TSL 30.9%(80) | 75.7%(75) | 67.0%(65) | 67.0%(65) | 52.1%(30) | 59.6%(35) | 62.0%(35) | 72.8%(830)
Our Method | 77.6%(30) | 86.1%(75) | 84.6%(30) | 85.2%(75) | 83.5%(30) | 78.4%(35) | 82.2%(35) | 77.8%(80)
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Manifold with Noise Effect

Qriginal Original Manifold LLE Result (Original
Manifold Sampling Manifold)
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Robust Manifold by Low-Rank Recovery

[ Real-world ATR data are Iarga
scale, unbalanced in dynamic
sampling, and easily affected
by noises and outliers, which

are difficult to represent.

4 )

- J

. 4

-
Low-rank matrix recovery ‘

can deal with noises and
outliers for data
reconstruction.

VN

Automated, real-time,
and robust
description of ATR
data space under
uncertainty.

Manifold

Xi [x1,%2, oo\ Xy ]
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Stabilized Manifold Learning
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Stabilized Manifold Learning
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Results on UT-Interaction dataset

* 6 interaction classes, 60 videos, 23 interactive phrases, 16 motion attributes

handshake [ek:lo@ 0.00 0.10 0.00 0.00 0.10

hug| 0.00 0.00 0.00 0.00

kick| 0.00 0.00

point| 0.00 0.00

punch| 0.00 0.00

push| 0.00 0.00

handshg’?eg kfck JDOfnt 'Ouf?ch Pusp : v Z
Confusion matrix of our method Classification examples of our method
Accuracy = 88.33%

Recognition accuracy (%) of methods

Recognition accuracy (%) of methods

100 - Methods Overall
90 | = bag-of-words bag-of-words 68.33
ig . IH KIS THI 1o = no-phrase method no-phrase method 70

T Il IN LI no-AC method 80
60 1 Il IR 111 = no-AC method no-IPC method 81.67

ig I o Y| . 0. IPC method Ryoo & Aggarwal (ICCV 2009)|| 70.8
o i Il Yu et al.(BMVC 2010) 83.33
20 - I I I I I I ® Ryoo & Aggarwal (ICCV RyOO (ICCV 2011) 85
10 - I I 2009) Our method 88.33

0. I i Il = Yu et al. (BMVC 2010)
= Ryoo (ICCV 2011) Northeastern




Activity Prediction

Actionlets: Activity Decomposition
500

= Smoothed Motion Velocity

Activity videos

Frame8 ~ Frame 20
400 Seqmentalion Points -4
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100 ek
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Frame Index

Frame 133

300 Pick up the phone ] '
the Phone
200 Answer |
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Model

Activity Prediction: Who's gonna win this point? PAF: MO deling Predictability
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Activity Prediction- ECCV2012
Kang Li, Jie Hu, and Yun Fu




Results on Activity Prediction

On Daily Activity Dataset (Mid-level comp

lex)

Actionlet A,: “Reach object” — Pr(4,]4,4,) =.0006
0.9r
Pr(A,|A;44) = .995
oal (4,14145)
Actionlet A;:
0.7+ L — “Grab object close to head”
& 0.6 TE =y
g B> & |
305k - - e e e Random _ _ | L7 l
é-:’ 4 S ¢ ’
04+ w"wl ! L L ™
- |t -
0.3+ —#— |ntegral BoW [1]
i 3 I Pr(A.|A,A,) = .0006
0ol Dynamic BoW [1] e (& L5 S B !
—#— SVM T T e o
0 Our Model Actionlet A,: “Pick up object” Pr(4,|4:4,) = 0006
0 . . . L . L L L — -
0 01 02 03 04 05 06 07 08 09 1 Activity: Making phone —  Pr(A.|4,A,) = .0006

Video Observation Ratio call

Activity class prediction:

Outperform state of the art with a large margin

0.74
On Tennis Game Dataset (High-level complex) or| [—e=rer
——— PST+PAF
: . ot 0.7}
Methods Tennis Game Dataset |
20% | 40% | 60% | 80% | 100% 0.68r
ob- ob- ob- ob- ob- § 066l
served | served [served | served [ served §064_
Integral Bow [1] | 0.47 | 0.44 | 0.53 | 0.47 | 0.51 < 0152_
Dynamic BoW [1]]| 0.53 | 0.55 | 0.49 | 0.44 | 0.48 ;)6_
SVM 0.56 | 0.52 1 0.51 | 0.48 | 0.49 05'8_
Our Model 0.59(0.64 | 0.65|0.65|0.70 '

Our method can also predict NEXT move

Only our method can predict activities with this kind of complexity.

0 0.1 02 03 04 05

0.6

1 1 1
0.7 08 09 1

Video Observation Ratio

Activity Prediction- ECCV2012
Kang Li, Jie Hu, and Yun Fu
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Large Scale Manifold Learning

0 Graph based methods require spectral decomposition of matrices
of n x n, where n denotes the number of samples.

0 The storage cost and computational cost of building neighborhood
maps are O(n?) and O(n3), it is almost intractable to apply these
methods to large-scale scenarios.

0 Neighborhood search is also a large scale aspect.

PCA 2-D Age Manifold NPP 2-D Age Manifold ... LPP 2-D Age Manifold ., OLPP 2-D Age Manifold
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Large Scale Manifold Learning
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Robust Matching of Sub-Manifolds

0 A robust visual representation must be insensitive to durations in the case of
dynamics or time series, such as action/activity videos.

0 A generalized manifold can be considered as a union of sub-manifolds with
different durations which characterize different instances with similar structures,
such as different individuals performing the same action, instead of a single
continuous manifold as conventionally regarded.

0 Robust matching of these sub-manifolds can be achieved through both low-rank
matrix recovery and simplex synchronization.

Sub-manifold 1

R Northeastern
University



Conclusion

» It is all about data!

» Low-rank analytics based algorithmic tool set is general and
promising for explosives-related data representation.

» Transfer learning, manifold learning, and subspace learning are
feasible extensions for uncertainty analysis.

» This ATR framework is certainly beyond the visual surveillance
scenarios.

» Thank you!
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