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 Physical Acquisition Model: 
•  Attenuation coefficients are energy-dependent 
•  X-ray energy spectrum is broad. 
•  The measurement model is: 

•     is measurement,           is the attenuation coefficient 
•     is the linear forward projection matrix 
•         is the normalized energy spectrum 

Conclusions 
  Incorporated a poly-energetic X-ray forward model using polynomial parameterization into MBIR 
  Joint estimation of the image and coefficients of beam hardening correction function 
  Simultaneous beam hardening correction during iterative reconstruction process 
  No additional spectrum information needed, significant improvement in image quality 

Experimental Results 
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 Problem: 
•  Measurement is non-linear function 

of attenuation coefficient 
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 Possible Correction Approaches: 
•  Hardware pre-filtering, 
•  Dual energy CT, 
•  Linearization 
•  Model-Based Iterative Reconstruction 

(MBIR), etc. 

 A Simplified Poly-energetic X-ray Forward Model 
Idea: Different materials can be separated according to their densities. 
•  Decompose energy-dependent attenuation into two unknown basis functions 

•  Substitute the decomposition into the measurement model and obtain a polynomial 
parameterization using two energy-independent “material” projections 

 MBIR-BHC (Simultaneous Image Reconstruction and Beam Hardening Correction) 
 
 
 
•  Incorporate the poly-energetic X-ray forward model into MBIR objective function 
•  We jointly estimate the coefficients of the correction polynomial. No additional spectrum 

information is needed. Correction is adapted to the dataset being used. 
•  Material segmentation                 is calculated by thresholding the initial image fed into MBIR. 
•  Use alternating optimization over the image     and the polynomial coefficients 
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 Simulated Data 
•  Simulated parallel-beam 

transmission polychromatic 
X-ray projections 

•  720 views, 1 degree/view 
•  1024 detectors, 0.24mm each 
•  512x512 image, FOV = 

250mm2 

•  Water disk phantom, with 
insertions of soft tissue and 
aluminum 

•  Severe streaks in FBP and 
generic MBIR 

•  Significant reduction in 
MBIR-BHC 

 Real X-ray CT Scan 
•  X-ray CT scan of an 

actual high clutter 
baggage with low and 
high density objects 

•  Resolution improvement 
•  Streak reduction 
•  Blooming artifacts 

reduction 

•                   indicator of low or high material 
•                       two underlying basis energy-dependent functions     
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Fig. 1 Comparison of reconstructed image using the simulated dataset 

•                two energy-independent “material” projections 
•         are the coefficients of the joint correction polynomial, can show 
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(a) FBP (b) Generic MBIR (c) MBIR-BHC 

(a) FBP 

(b) Generic MBIR 

(c) MBIR-BHC 

Fig. 3 Comparison of reconstructed image using the real X-ray CT data 

Fig. 2 Pixel profile of the simulation results 

 
γ 0.0 = 0, γ 1,0 = γ 0,1 = 1

  γ k .l

IEEE MIC 2013, Poster M22-25 


