Photon-counting CT*: Potential Advantages over Conventional CT

Taly Gilat Schmidt, PhD Department of Biomedical Engineering Marquette University

*Spectral Photon-Counting CT: Using a photon-counting detector to detected x-rays into 2 or more energy bins

Conclusions

Spectral photon-counting CT:

- Improves SNR and reduces beam hardening through optimal energy weighting
 - Limited additional benefit for N > 5 bins
 - May help explosive detection by reducing clouds
- Reduces noise in material decomposition
 - Limited additional benefit for N > 2 bins
 - May help explosive detection if task is SNR limited
 - Not fully realized due to detector issues
- Identifies K-edge materials
 - K-edge of explosives too low to be detected
 - K-edge may be useful to identify non-threats

Goal: Reduce Cluster Size

ATR today

PD / PFA improved by reducing clouds and overlap between threats/non-threats

*Courtesy of Carl Crawford

Conventional CT

- Doesn't take advantage of higher contrast at lower energies
- Different materials may have same gray level (μ value) in the reconstructed image
- \bullet The reconstructed μ value depends on the thickness of the material

Spectral Photon-Counting CT

- Photon-counting detectors sort photons into energy bins
- What can you do with energy information?
 - Energy Weighting:
 Optimally weight and combine energy-bins to form improved HU image
 - Material Decomposition

Energy-weighted Images

- Energy weighting increased CNR by 40% over photoncounting
- CNR improvement depends on energy-bin configuration
- Opportunity to optimize bins for explosive imaging

Photon-counting

Reduced Clouds Optimal Energy Weighting

Rupcich & Schmidt (2013) Shikhaliev & Fritz (2011) Le et. al (2010)

Beam Hardening Effects

PB: Projection-based optimal weightingIB: Image-based optimal weighting

Reduced Clouds

T. G. Schmidt , 2009

The attenuation coefficient can be decomposed into basis functions

$\mu(x,y,z) = a(x,y,z) \mu_{A} b(x,y,z) \mu_{B}$

Dual kV

Spectral Photon-Counting

Spectral photon-counting CT has more unique energy information — reduced noise

- How does photon-counting compare to dual kV? Same mean, lower noise
- How many bins do you need?
 Limited additional benefit for N>2

 How does photon counting compare to dual-kV when a realistic photon-counting detector is simulated (photons detected in incorrect bins)? Large bias for photon counting

 How does photon-counting perform when detector nonidealities included in decomposition algorithm? Bias corrected, but same noise as dual kV. No benefit for PC

K-edge Imaging

By having N>2 bins, can isolate and directly quantify the concentration of K-edge materials

10x error, 3x noise

Conventional CT Photon-counting

Dual kVp

K-edge Imaging

Reduce Overlap Threat / Non-threat

Schlomka, PMB 2008

Photoelectric

Compton

Iodine

K-edges of Explosives

- K-edges of explosives too low to be detected
- Could be detected by removing object from bag

Material	K-edge (keV)
Н	0.01
С	0.3
Ν	0.4
0	0.5

K-edges of Non-threats?

Material	K-edge (keV)
Sn	29
Sb	30
Те	32
I	33
Xe	35
Cs	36
Ba	37
La	39
Ce	40
Pr	42
Nd	44

Material	K-edge (keV)
Pm	45
Sm	47
Eu	49
Gd	50
Tb	52
Dy	54
Но	56
Er	57
Tm	59
Tb	61
Lu	63

Material	K-edge (keV)
Hf	65
Та	67
W	69
Re	72
Os	74
Ir	76
Pt	78
Au	80
Hg	82
Th	85
Pb	88

K-edge of lodine

- X-ray transmission generally increases with energy
- Transmission decreases sharply at K-edge
- K-edge can be identified for iodinated contrast agent

Iodinated X-ray Contrast Agent

370 mg/cm³ lodine

Detect the K-edge of Salt?

Identifying salt may be useful for discriminating non-threat

Detect the K-edge of Salt?

Table Salt

0.1 mg/cm³ lodine

Not many 30-40 keV photons penetrate, difficult to see K-edge

Conclusions

Spectral photon-counting CT:

- Improves SNR and removes beam hardening through optimal energy weighting
 - Limited additional benefit for N > 5 bins
 - May help explosive detection by reducing clouds
- Reduces noise in material decomposition
 - Limited additional benefit for N > 2 bins
 - May help explosive detection if task is SNR limited
 - Not fully realized due to detector issues
- Identifies K-edge materials
 - K-edge of explosives too low to be detected
 - K-edge may be useful to identify non-threats

Acknowledgments

Franco Rupcich, Fatih Pektas, Kevin Zimmerman (Marquette) Steve Haworth (MCW)

NIH R21 EB015094-01A1

This study was supported in part by an appointment to the Research Participation Program at the FDA Center for Devices and Radiological Health