

Cosmic-Ray Air Cargo Screening

Multi-Mode Passive Detection System (MMPDS) Detection of WMD and Contraband

ADSA09

22 October 2013

Michael J. Sossong, Ph.D. DSIC Vice President for R&D

- Cosmic-ray produced charged particles are useful for scanning for both nuclear and conventional explosives
 - Charged particles provide useful signatures for explosives detection.
 - Acceptable scan times (Shorter than you're thinking)
 - 3D imaging reduces difficulty with clutter.
 - No accelerator required (but could be applied).
- Charged particle imaging is a fertile ground for research.

- Michael Sossong Particle Physicist
- Sankaran Kumar Physicist
- Gary Blanpied Particle Physicist
- Priscilla Kurnadi Particle Physicist
- Andre Lehovich Medical Imaging Mathematician
- Sean Simon Particle Physicist
- Joel Kindem Medical Imaging Physicist
- Weidong Luo Medical Imaging Physicist
- Chuanyong Bai Medical Imaging Physicist
- Shawn McKenney Algorithms and Software
- Limited University/National Lab Collaboration

Development History

- Technology invented at Los Alamos National Laboratory (LANL)
 - Early funding from LDRD, NA-22, DTRA, DNDO
- DSIC begins funding LANL development in 2006
 - Completely privately funded
- First system demonstrated at DSIC in 2009
 - Independent testing
- First truck scanner constructed at DSIC in 2011
- First port deployment at Freeport Container Port in Bahamas 2012
- Work begins on explosives detection, 2012
- US Government (DNDO) (Nuclear) characterization ongoing
 - Expected completion Q2, 2014

© 2013 Decision Sciences International Corporation

Cosmic Ray Generated Charged Particles

- High energy protons interact with upper atmosphere producing showers of secondary particles
 - Muons:
 - Long lived (~60 μs or 60,000 feet)
 - Highly penetrating
 - Heavy (200x mass of electron)
 - Mean energy 3 GeV
 - No nuclear interaction
 - 100/liter/minute
 - Electrons:
 - Less penetrating than muons
 - 25/liter/minute
- Distributed with cos² offzenith (37° mean)

Charged Particle Interactions

- Scattering is interaction with nuclear charge
- Stopping is due to energy loss to electrons in material
- Muons primarily penetrate and are used for scattering
- Electrons stop much more readily and are useful for discriminating low-Z materials

Muon Scattering Signature

DSIC Cosmic Ray Scanning

© 2013 Decision Sciences International Corporation

9

Multiple Coulomb Scattering

DSIC Cosmic Ray Scanning

Charged Particle Attenuation

From Particle Data Book 2012

- Developing physics model incorporating relevant interactions
- Implemented simple uniform dE/dx model for fully attenuated (stopped) particles
- Measure Stopping Power for materials by counting stopped particles

Combined Signatures

10 minute exposures, statistical uncertainty smaller than points Blue diamonds measured, Red squares simulated

- Materials can be discriminated based on combined scattering/stopping signatures
- Regions of interest can be defined on this plane to provide automatic detection

MMPDS: How It Works

Base Technology: Sealed Drift Tubes

Simple "light-bulb" design

- Positive voltage on center wire generates radial electric field
- Muon ionizes gas along path
- Electrons drift at constant velocity along E-field toward anode wire
- High field near wire causes charge amplification via "avalanche" effect
- Drift time converted to closest approach distance giving radius to ~250 micron
- Gammas produce Compton electrons in tube wall which ionize gas as well, providing raw gamma count rates

Layers of Tubes Provide Tracking

3D Imaging Using Charged Particles – Scattering

- Particle scattering reflect atomic density
 - Scattering angle Radiation length
 - PoCA/path location
 - DoCA thickness
- Particles explore volume from many angles
 - Provides better vertical localization
 - Resolves vertical clutter
- Reconstruction techniques adapted from medical imaging
 - PET

3D Imaging Using Charged Particles – Stopping

- Each incoming particle is tracked
 - Stopped trajectories point to region of stopping
- Volume explored from many angles
 - 3D imaging
 - Path lengths through objects
 - Absolute measurement of density, not relative contrast
- Measurement of momentum is better for lower energy particles that stop
 - Helps identify materials
- Ratio of stopped to through particles provides more statistically significant data than standard attenuation radiography
- Stopping is incorporated with existing scattering reconstruction
 - SPECT

Security Solutions Zoom view for extended scan **High-Z Shielding** Car - 30 seconds **High-Z Shielding** Tractor Trailer – 2 minutes Truck - 40 seconds 35 seconds **View From Above** 8" Steel 2" Lead 2" Uranium Car/Passengers, 3 minutes DSIC Cosmic Ray Scanning 19 © 2013 Decision Sciences International Corporation

Scattering Images

DECISION SCIENCES Security Solutions

Basic detection system concept (SNM/RDD)

- Cosmic-RayTomography Non-Intrusive Imaging (NII) using background muons/electrons, tracked by simple sealed drift tubes
 - Searches for SNM or enough shielding to block gamma emissions
 - Highly penetrating (> 16" steel demonstrated)
 - Identifies material by atomic number/density
 - Fast results (sub-minute times to clear)
 - Only available <u>passive</u> NII solution
- Sensitive gamma detection is built-in
 - Very large area gives high sensitivity
 - Natural cosmic background count subtraction
 - Many independent sensors allows position and distribution measurement for better discrimination of NORM
 - Provides a great deal of information in combination with MT
 - Source strength
 - Gamma energy

Combined Scattering/Stopping Reconstruction

- Use scattering image as prior for attenuation reconstruction and vice versa
- Two reconstructed scalars for each voxel
 - Stopping power
 - Scattering density
- Detect threats/contraband of interest based on library of scattering/stopping signals for threat materials

3 minute exposure

© 2013 Decision Sciences International Corporation

Imaging of Low-Z Pallets

DSIC Cosmic Ray Scanning

Advanced Imaging Algorithm Development

Challenges

- Sparse data
- Limited angular acceptance
 - Vertical thickness measurement critical to material discrimination
- Measurement uncertainty
 - Tracking and momentum
- Low latency required
- Complex, high-clutter scenes

Approaches

- Higher fidelity physics models
- Compressive sensing/adaptive measurement
- Iterative algorithms
- Filtering/deconvolution
 - Filtered back-projection
- Point cloud approaches

First Production Unit – Freeport, Bahamas

Scanning Containers Daily – US Government Characterization Ongoing – Expected Completion 2014

MMPDS Is Scalable to Provide Complete Architecture

Current Threats to Air Cargo Industry

 Printer ink cartridge terror plot containing plastic explosives and a detonating mechanism discovered on two separate cargo planes. (Oct. 2010)

Scanning Logistics for Small Threat Quantities

DECISION SCIENCES Security Solutions

- For small threat sizes, the number of particles decreases for a set scan time
- For sub-kilogram quantities of explosives, resolution of false positives may require 45 minute scan times
 - Package scanners could be used in drop-off locations while awaiting pick-up
 - Many pallets could be scanned simultaneously during loading process

Page 29

www.dsic.com

 Charged particle imaging fertile ground for research

Summary

- Cosmic-ray charged particles are useful
 - **Nuclear materials** detection
 - Explosives detection (in ulletdevelopment)
 - Numerous application • spaces including air-cargo scanning
- algorithm development is

