

Bottle Scanner Technologies

ADSA09, Boston, 22nd October 2013

Ben Cantwell New Technology Manager

Conclusions

- Kromek's Identifier Bottle Scanner is CZT based multispectral X-ray system for scanning single bottles
- Benefits and pitfalls of multispectral detectors
- Simple operation of Bottle Scanner
- Certified to Standard 3, Europe's highest level of threat detection, with a false alarm rate < 15%
- Developing a "Type C" system for scanning bottles on trays on a conveyor belt
- Multispectral techniques showing estimated sub-5% FAR

The Kromek Group

Integrated Activities

Multispectral detectors

- Semiconductor detectors such as cadmium zinc telluride (CZT) allow energies of incoming photons to be measured with good resolution, unlike conventional energy-integration dual energy detectors.
- Allows you to make use of energy dependency of absorption coefficient to separate material
- Already making progress in medical industry
- Example below* shows imaging of phantom containing 5 different materials at 5 different energy levels – clear separation

*Wang et al, Phys Med Biol (2011)

Artefacts with detectors – beam hardening

Reflex = -Ln (Transmission)

Artefacts with multispectral detectors – count rate effects

- Pulse pileup occurs when photon is absorbed before the charge from the previous photon is fully detected
- Charges add and information about energy and number of photon events is distorted
- Effect higher at higher photon rates
- Depending upon electronics, baseline may also shift as count rate varies

Effects on transmission

 Artefacts mean small changes in e.g. tube voltage can lead to large changes in transmission

Ways around multispectral artefacts

- Do not try to reconstruct NIST!
- Teach/calibration method should take detector effects into account
- Take steps to keep measurements you will wish to compare in the same count rate regime

How the Bottle Scanner Works

Scans one bottle at a time using single CZT detector

Results - Bin 1

Red - THREAT Blue - BENIGN

Results – All 6 bins

Red - THREAT Blue - BENIGN

Database Teach

Scan different sized liquid filled glass cuvettes

• Similar for different sized glass thicknesses, get $\operatorname{Ln}(T_g)$ vs thickness function

- Remove effect of cuvette walls to get liquid Ln(T_i) vs thickness graph
- Repeat for different liquids and wall materials
- Have range of equations to generate transmissions as function of liquid and wall thickness to create database

What is bottle scanner - algorithm

- Scan is measured against items in taught database
- THREAT/BENIGN classification based on taught materials it matches to
- Trade-off between False Alarms and Probability of Threat Detection
- ROC curve can be manipulated by
 - Selection of items in database
 - Match criteria
 - Decision on items which are matched

False Alarm Rate < 15% at Standard 3, Europe's highest level of threat detection

Eurostars scanner – what it is

- Wheras Identifier Bottle Scanner scans 1 bottle at a time (called "Type B" in Europe), this is a "Type C" scanner which will scan mutiple bottles in the same load
- It is likely bottles will be placed in trays which will go on a conveyor belt
- Current design has two generators and linear arrays which scan items in 2 planes
- Target False Alarm Rate <5%

Eurostars scanner - method

Eurostars scanner - results

- Testing with simulations using artefacts from real multispectral detectors
- On target for sub 5% False Alarm Rate
- Targeting ECAC approval testing in April 2014
- Looking for potential partners for commercialisation