Awareness and Localization of Explosives-Related Threats (ALERT) A Department of Homeland Security Center of Excellence

Addressing Issues with Sample Collection Drs. Jimmie Oxley, James Smith, Gerald Kagan, with Jon Canino, Ryan Rettinger, Matthew Porter, Guang Zhang Sravanthi Vadlamannati, Morgan Turano

Rhode Island

This material is based upon work was partially supported by the U.S. Department of Homeland Security, Science & Technology Directorate, Office of University Programs. Views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of any other agency.

Questions:

How much explosive is available for collection or detection? Where can it be found?

Approaches:

- to collecting sample
- to presenting sample to detectors
- to laboratory analysis of our progress.

Volunteers put together "pipe bombs" with fluorescent dye filler

Fingerprints were on the device

Residue was on bench & floor

Attempts to clean up mess generally scattered more residue

Residue was found wherever hands touch

Chemical A (50 lb) was ground, loaded in a vehicle, & driven a short distance. This was repeated on two consecutive days.

Residue was where hands touched

	Day 1		Da	y 2
	area	Α	area	Α
	cm ²	ug/cm ²	cm ²	ug/cm ²
INTERIOR				
gear shift	9	355	9	4848
steering wheel	1218	5.5	1218	80
door frame driver	6	0.87	2	358
door handle driver	45	11	45	112
door handle passenger	45	49	45	162
EXTERIOR				
door handle driver	10	15	23	90
door handle passenger	8	0.13	2	458
truck by plate, right	70	0.48	85	78
truck by plate, right	70	7.9	35	35
CAR BLANK	98	0.024	16	0.064

Typical amount chemical A 0.1 to 0.4 mg/cm² on interior 30-90 ug/cm² on exterior

Fingerprints

9 Handprints of A→ ave 15 ug/cm²; high 28 ug/cm²

- Plasticized "explosive" left cleaner assembly area but adhered to hands longer than powdered material.
- Contamination of handlers' clothes was minor; < 20% of time was contamination found.
- Dye on clothing was usually on right, front side where hands touch, e.g. pocket
- Amount dye ranged from 10⁻¹ to 10² ug/cm,² mode: 2 to 4 ug/cm² & median: 4.7 ug/cm.²
 68% of samples < 16 µg/cm².
- Size residue spot: 0.15 to 268 cm² 70% samples $< 3 \text{ cm}^2$

Explosive Residue on Hair

Explosives easily adhere to hair within minutes of exposure.

Even those just observing others handling explosives were

contaminated.

Generally, explosives contaminate hair by particle transfer, not by their vapor (which is minor).

Explosives in cut hair persist for days despite washing.

Persistence: % explosive remaining on hair after standing 5 days or 2 washing

	TATP	EGDN	TNT	PETN
hair standing	20%	20%	100%	not done
hair washed	70%	30%	50%	3%

Sampling Hair on Heads of Explosive Handlers & Suspects

Hair of those working with explosive was combed. Even Monday AM, explosive residue was found in hair of some. At end of week, despite evening showers, all were contaminated. Example is shown for tests at AP Hill (2003)

% of people (30) with detectable amounts of indicated explosive combed from hair

	Monday		Tuesday		Wednesday		Thursday	
	Start day	End day						
PETN	3%	67%	26%	75%	0%	90%	60%	100%
RDX	3%	17%	4%	40%	6%	20%	0%	54%

In 2009 ~600 combs were sent to theater & used on suspects. About 1/3 showed TNT, RDX, or PETN residue, but no immediate feedback was available to the warfighter.

Future studies will seek for in-field analysis to provide immediate results.

Molecularly Imprinted Polymers (MIP)-Selective for Explosives

Can this "selectivity" be exploited to collect explosives?

The variables a backbone -- the structural monomer a binding site – the functional monomer a template a polymerizing agent & method the ratio of structural and functional monomers & their ratio to the template

MIP Results

	MIP mg TNT	Control Polymer mg TNT	TNT uptake over control	Functional Monomer	Structural Monomer	Ratio TNT: F:S	
	2.3	1.8	128%	PTMS	TriEOS	1:4:20	
	7.1	6.0	118%	PTMS	TEOS	1:8:36	
	7.7	8	96%	PTMS	TEOS	1:8:18	
	4.9	3.7	132%	PTMS	TEOS	1:4:27	
	4.9	3.7	134%	PTMS	TEOS	1:10:50	
	6.7	2.9	231%	PTMS	TEOS	1:8:40	
	2	2	100%	TMOTFS	TEOS	1:4:20	
	5.7	4.8	119%	TEOTES	TEOS	1:4:20	
	Functiona	al PTMS=	phenyltrimetho	xysilane	TEOS= tetra	aethoxysilane	•
	TMOTFS	= trimethox	ytrifluoropropyl s	silane	TriEOS =me	ethyltriethoxys	ilane
	TEOTES	= Triethoxy-	2-thenylsilane	OCH ₃	0	CH ₃	>
F₃C-		:H ₃	Si-OCH3	OCH ₃	H₃CO-Si-(CH₃	$O CH_3 O$	si ⁰
	OCH ₃ TM	IOTES T	Ó_CH₃ FOTES	PTMS	TriEOS	TEOS	\langle

Analysis Metric-NMR Titration TNT & Methacrylic Acid

Chemical Shift of Aromatic Protons on TNT. Red – no TNT, Green – 1:10 TNT:MAA, Blue – 7:10 TNT:MAA, Purple – 1:1 TNT:MAA

Testing Method Static Vapor Jars TNT or AN

Solid TNT (Bottom)

5 uncoated & 7 coated samples Al foil or cardboard were stored with 500 mg TNT or AN at 60°C & then extracted-- TNT by 10 mL ACN & analyzed by GC/µECD or AN 5 mL DI water & analyzed by IC/ECD

	Target	Test	Average
Substance/Matrix	Explosive	Time	(µg/mL)
Polymer Powder in 1 L Container			
Empty 50mL Vial	TNT	3 days	0.139
PMAA (polymethacrylic acid)	TNT	3 days	0.179
Graphite	TNT	3 days	0.287
PS2DVB (polystyrene	Ī		
2%Divinylbenzene)	TNT	3 days	0.328
Sand (SiO2)	TNT	3 days	0.343
Polypyrrole	TNT	3 days	0.389
PTMS	T I		
(polyphenyl(trimethoxy)silane)	TNT	3 days	0.412
Tenax	TNT	3 days	0.477
Polyaniline (sulfate salt)	TNT	3 days	0.499
Polymer Coating on Cardboard in			
1L/200 mL Container			
Polyaniline sulfate salt PVA			
(1g/1g)	TNT	1 hour	1.1
Uncoated Cardboard 1.5X1.5cm	TNT	1 hour	0.284
Polyaniline sulfate salt/Graphite			
(1g/2g)	AN	2 days	4.45
Uncoated Cardboard 3X3cm	AN	2 days	0.401

Polymer/Swab Evaluation by Pickup & Release

Sorption of TNT vapor

(60 min, 60C)(ng/mg matrix)

TNT vapor 60°C, 60 min sorption & release

Polymer

Tenax

...

Solution

TNT/Polymer

(ng/mg)

16.4

13.3

14.9

Headspace

TNT/Polymer

(ng/mg)

0.16

0.13

0.20

% TNT

released

1%

1%

1%

1% 1% 1% 1% 5% 3% 3% 4% 3% 3% 4% 5% 8% 8% 16% 8% 9% 16%

11%

47% 92% 104% 91%

Substrate Type	Average TNT/Polymer (ng/mg)
Teflon	0.90
FLIR Nomex	0.90
1 PVA: 1 PANIAI Foil	0.97
1 PVA : 1 PANi	1.5
Uncoat SSW	2.7
2.5g PVA/2.5g PANi (CB)	3.9
2.5g PVA/ 2.5g graphite (CB)	4.5
2.5g graphite/ 0.5g PAA/ 2.0g PVA (CB)	4.8
Beta-Cyclodextrin	5.4
Cardboard (CB)	5.9
Polystyrene	5.9
Montmorillonite	6.6
Bentonite	7.1
Alpha-Cyclodextrin	7.3
Graphite	8.8
Tenax	10.3

	п	10.8	0.12
	"	10.9	0.08
	п	9.27	0.13
	п	8.76	0.11
	Poly(2,6-dimethyl-1,4-phenylene oxide)	4.50	0.21
	n .	5.76	0.18
	п	5.59	0.17
	п	4.51	0.16
	"	5.62	0.16
	"	4.93	0.13
	11	4.92	0.19
	"	2.09	0.11
	Polystyrene	4.64	0.36
	n	4.05	0.31
	"	5.27	0.87
	п	6.33	0.49
	11	7.88	0.68
	"	9.78	1.58
	п	5.84	0.62
	Nomex	2.4	1.1
	"	2.5	2.3
	"	2.0	2.04
•	"	2.6	2.37
/.			

Sorption of vapor TNT is judged by exhaustive extraction by solvent.

Release is from a heated vial into GC.

Metric of Adhesion of Explosive to Polymer: Atomic Force Microscopy (AFM)

(1) 500 force curves are obtained in 3 separate static locations.

3.00

0.00

0.50

1 00

1.50

Distance (µm)

2.00

2.50

(2) 500 force curves are obtained in roaming area (25 μ m² traveling at 1 μ m/s).

Force curves deemed unusable are discarded from data set, leaving 1000 to 2000 curves.

Metric for Matrix Pickup: AFM (snap-off)

Better Pickup and Release

Conducting Polymers

- Attract (or repel) explosives with electrostatics
- Switchable state (conducting/non-conducting) may allow easy release of explosive
- NMR titration studies demonstrated aromatic compounds have affinity for TNT
- Aromatics are common in conducting polymers
- May allow for high sorption combined with high release efficiency

