Where does Video Analytics go next for TSA Octavia Camps and Mario Sznaier Students: C. Dicle, T. Hebble, O. Lehmann, J. Romano, and F. Xiong Electrical and Computer Engineering # Video Analytics for TSA - In-the-Exit Contraflow Detection - Deployed at CLE Airport - Two different exits, different geometry - ~0 miss-detections, 1 to 2 false alarms/week - Tag-and-Track across camera network - In progress, to be deployed at CLE Airport soon - Two testbeds: - Parking to Terminal and - Checkpoint Exit to Three Concourses - Activity Recognition, Object Left Behind: - Theory developed, tested on simple scenarios Dynamics as a key enabler to handle data deluge and obtain actionable information in a timely fashion. Image from http://iware.pk/CCTVSystems.aspx #### Customers: - TSA - Law enforcement agencies - Sport venues, theme parks, etc. ### Detect Potential Threats & Track Suspects: - Security breaches at portals - Track across cameras - Disruptive, suspicious behaviors - Objects left behind ### Detect Other Emergencies: - Person falling or hurt - Lost child - Stolen property ### Requirements and Challenges - Infrastructure: - Cameras already deployed - Security surveillance cameras - Citizen's cell phones - Video is recorded, not processed - Performance: - 0 misdetections, ~0 false alarms surveillance camera in an airport. - Timely detection: real time processing - G Cell video showed the Boston Marathon Suspect(s) - Need to process vast amounts of highly complex data - Cope with environment, viewpoint, appearance changes - Ignore nuisance/clutter data - Find actionable/relevant information - Dynamics as key enabler ## Addressing the Challenges Sequences as features capture the underlying dynamics | Xo | ΧI | X2 | X 3 | |-----------------------|-------------|-------------|-------------| | yo | Уι | y 2 | / 3 | | ΧI | X 2 | X 3 | X 4 | | уι | y 2 | /3 | У4 | | X 2 | X 3 | X 4 | X 5 | | y 2 | y 3 | у 4 | y 5 | | X | X 4 | X 5 | X 6 | | y ₃ | y 4 | y 5 | y 6 | | X 4 | X 5 | X 6 | X 7 | | y 4 | y 5 | у6 | y 7 | | X 5 | X 6 | X 7 | X 8 | | y 5 | y 6 | y 7 | y 8 | | X 6 | X 7 | X 8 | X 9 | | y 6 | y 7 | y 8 | y 9 | | X 7 | X 8 | X 9 | X 10 | | y 7 | y 8 | y 9 | y 10 | | X 8 | X 9 | X 10 | XII | | y 8 | y 9 | y 10 | уп | | X 9 | X 10 | XII | X 12 | | y 9 | y 10 | уп | y 12 | | X 10 | XII | X12 | X13 | | y 10 | уп | y 12 | y 13 | **Hankelet** Sequences as features capture the underlying dynamics **y**4 **X**5 **y**5 **X**5 **X**6 **y**4 **y**5 y6 **X**5 **X**7 **y**4 **y**5 **y**7 **X**5 **X**8 **y**5 **y**8 X6 **X**9 y6 **y**7 **y**8 **y**9 XI0 **y**7 **y**8 **y**10 XII XIO **y**8 YII **Y**10 X12 XIO X9 **y**12 **y**9 **y**10 XII XI3 XIO **y**10 **Y**12 **Y**13 Hankelet **X**3 **y**2 ## Dynamics-based Inference Methods Predict Denoise - Classify data - Unsupervised - Supervised Rank minimization of a structured Hankelet matrices ### Partnership with TSA and CLE Airport - Access to live video: - 3 and 2 cameras at two exit lanes - 5 cameras from Parking structure to terminal - More to come #### Collaboration with Siemens Research - Support recording and accessing video - Support transition technology to commercial surveillance systems #### Semi-automated annotation - Ease ground-truth annotation of data - Location, attributes, Id-across cameras - Facilitate both training and testing of algorithms ### In-the-exit contraflow: - Entrance through an airport exit: - Security-breach - Terminal(s) must be evacuated - Flights cancelled, millions of dollars cost ## In-The-Exit Contraflow Detection ### In-the-exit contraflow: - Entrance through an airport exit: - Security-breach - Terminal(s) must be evacuated - Flights cancelled, millions of dollars cost ### In-The-Exit Contraflow Detection - Bank of trackers + detection of contraflow motion - Real time GPU-based implementation - Currently deployed at CLE Airport, running 24/7, two exit lanes - Statistics on 10 weeks of video: - 628 detections; 0 Miss-detections, 12 False alarms ### In-The-Exit Contraflow Detection - Bank of trackers + detection of contraflow motion - Real time GPU-based implementation - Currently deployed at CLE Airport, running 24/7, two exit lanes - Statistics on 10 weeks of video: - 628 detections; 0 Miss-detections, 12 False alarms ### RPI In-the-Exit (R. Radke) ### BU In-the-Exit (V. Saligrama) ## Tracking in Crowded Scenes ## Matching tracklets have simpler dynamics **Dynamics carry Id information of the target.** ## Tracking in Crowded Scenes all object occurrences J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Ours (ICCV 13) #### Unsupervised, real-time tracking through a camera network Two testbeds at CLE Airport: 5 and 7 cameras, little or no overlapping field of view ### Appearance-based Reld | | X | y-y_{0} | R | G | В | I_{x} | I_{y} | |---------|---|---------|---|----|----|-------|-------| | x | 1 | 2 | 4 | 7 | 11 | 16 | 22 | | y-y_{0} | | 3 | 5 | 8 | 12 | 17 | 23 | | R | | | 6 | 9 | 13 | 18 | 24 | | G | | | | 10 | 14 | 19 | 25 | | В | | | | | 15 | 20 | 26 | | I_{x} | | | | | | 21 | 27 | | I_{y} | | | | | | | 28 | • Use **Region Covariance** to model target appearance. # Using dynamic appearance | | X | y-y_{0} | R | G | В | I_{x} | _{y} | |---------|---|---------|---|----|----|-------|------| | X | 1 | 2 | 4 | 7 | 11 | 16 | 22 | | y-y_{0} | | 3 | 5 | 8 | 12 | 17 | 23 | | R | | | 6 | 9 | 13 | 18 | 24 | | G | | | | 10 | 14 | 19 | 25 | | В | | | | | 15 | 20 | 26 | | I_{x} | | | | | | 21 | 27 | | I_{y} | | | | | | | 28 | - Use Region Covariance to model target appearance. - Model its dynamic evolution on the Lie group of positive definite matrices. # Using dynamic appearance - Use Region Covariance to model target appearance. - Model its dynamic evolution on the Lie group of positive definite matrices. - Compare appearances using their intrinsic distance on this manifold. ### **Cross-View Activity Recognition** - IXMAS dataset (5 cameras, 12 actors, 11 activities): - Check watch, - -cross arms, - -scratch head, - -sit down, - -get up, - turn around, - -walk, - -wave, - -punch, - kick, - pick up - 90.57% Average Accuracy - Improvement of 20% over previous state of the art. (CVPR 12) NEXT: Crowded and clutter scenarios with multiple agents ## Coordinated Activities State of the Art ## Coordinated Activities #### -Using Sparse Dynamics: (ICCV 13) Next: From seemingly normal individual activity to suspicious collective behavior. ### Who/What Where doing What (stationary, vehicle) (smooth, vehicle) -(slowing, vehicle) (stop to go, vehicle) -(smooth, People) cstationary, People) - Automatically joint segmentation and event detection - Uses both appearance and dynamics NEXT: Threats (i.e. leaving bag behind) in crowded scenarios Real time implementations ## Video Analytics for TSA - In-the-Exit Contraflow Detection - Deployed at CLE Airport - Two different exits, different geometry - ~0 miss-detections, 1 to 2 false alarms/week - Tag-and-Track across camera network - In progress, to be deployed at CLE Airport soon - Two testbeds: - Parking to Terminal and - Checkpoint Exit to Three Concourses - Activity Recognition, Object Left Behind: - Theory developed, tested on simple scenarios Dynamics as a key enabler to handle data deluge and obtain actionable information in a timely fashion. ## **THANKS!!**