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@Video Analytics for TSA

In-the-Exit Contraflow Detection
Deployed at CLE Airport

Two different exits, different geometry
~0 miss-detections, 1 to 2 false alarms/week

Tag-and-Track across camera network
In progress, to be deployed at CLE Airport soon

Two testbeds:
Parking to Terminal and
Checkpoint Exit to Three Concourses

Activity Recognition, Object Left Behind:
Theory developed, tested on simple scenarios

Dynamics as a key enabler to handle data deluge and
obtain actionable information in a timely fashion.




Detect Potential Threats &
Track Suspects:

Security breaches at portals
Track across cameras
Disruptive, suspicious behaviors
Objects left behind

Detect Other Emergencies:

. - Person falling or hurt
Image from http://iware.pk/CCTVSystems.aspx LOSt Chlld

Stolen property
Customers:
TSA
Law enforcement agencies
Sport venues, theme parks, etc.




@ Requirements and Challenges

Infrastructure:

Cameras already deployed
Security surveillance cameras
Citizen’s cell phones

Video is recorded, not processed

Performance:

0 misdetections, ~0 false alarms surveillance camera in an airport. =8 ,
Timely detection: real time processing Cell video showed the

Boston Marathon Suspect(s)
Data Deluge Challenge:

Need to process vast amounts of highly complex data
Cope with environment, viewpoint, appearance changes
Ignore nuisance/clutter data

Find actionable/relevant information

Dynamics as key enabler




@Addressing the Challenges
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@ Dynamics-based Feature

Sequences as features capture the underlying dynamics
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@ Dynamics-based Feature

Sequences as features capture the underlying dynamics
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@ Dynamics-based Feature

Sequences as features capture the underlying dynamics
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Hankelet Invariants:
Rank n = complexity
AR is invariant to affine transformations
Columns Subspace is invariant to initial condition

A compact, yet rich representation.
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@ Dynamics-based Inference Methods

Predict

Denoise

Associate data

Classify data
Unsupervised
Supervised

Detect Causality * % i

vy

Rank minimization of a structured Hankelet matrices




@ Real Surveillance Data

Partnership with TSA and CLE Airport

Access to live video:
3 and 2 cameras at two exit lanes

5 cameras from Parking structure to terminal
9 AE

More to come
Collaboration with Siemens Research

Support recording and accessing video SIEMENS
Support transition technology to commercial surveillance systems

Semi-automated annotation

Ease ground-truth annotation of data
Location, attributes, Id-across cameras

Facilitate both training and testing of algorithms




v| Follow Single Object

Delete Future Annotations
Delete Past Annotations
Mark Object as Finished

Edit Bounding Box
Optimize P ath
Show All Objects
Show Bounding Box

Show Tracks

Save Tracks

arEln
Goto Frame
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@In—The—Exit Contraflow Detection

In-the-exit contraflow:

Entrance through an airport exit:
Security-breach
Terminal(s) must be evacuated
Flights cancelled, millions of dollars cost
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@In—The—Exit Contraflow Detection

= Bank of trackers + detection of contraflow motion
= Real time GPU-based implementation
= Currently deployed at CLE Airport, running 24/7, two exit lanes
= Statistics on 10 weeks of video:
= 628 detections; 0 Miss-detections, 12 False alarms
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= Bank of trackers + detection of contraflow motion
= Real time GPU-based implementation
= Currently deployed at CLE Airport, running 24/7, two exit lanes
= Statistics on 10 weeks of video:
= 628 detections; 0 Miss-detections, 12 False alarms

117252012 11:268:24.8%2




RPI In-the-Exit (R. Radke)

CLECounter-Flow Detection

file View Tooks Windows Help
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Matching tracklets have

simpler dynamics
Dynamics carry Id information
of the target.
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MOTA

I8 o O da U

outliers + misses + switches

| mismatches: 0 __mismatches: 0

MOTA =1-— -
all object occurrences

J. Berclaz, F. Fleuret, E. 7 u rS (ICCV 13)

Turetken, and P. Fua.




Two testbeds at CLE Airport:
5 and 7 cameras, little or no overlapping field of view




@Appearance based Reld
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@ Using dynamic appearance




@ Using dynamic appearance

11 16 22
.-“;_T.}

* Use Region Covariance to model target appearance.



@ Using dynamic appearance
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* Use Region Covariance to model target appearance.
* Model its dynamic evolution on the Lie group of positive definite matrices.




@ Using dynamic appearance
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* Use Region Covariance to model target appearance.
* Model its dynamic evolution on the Lie group of positive definite matrices.
e Compare appearances using their intrinsic distance on this manifold.



IXMAS dataset (5 cameras, 12 actors, 11 activities):

Check watch,
Cross arms,
scratch head,
sit down,

get up,

turn around,
walk,

wave, s -~
punch, i -
kick, Afﬁcr:‘gnadniﬂ;?litial j“
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90.57% Average Accuracy

Improvement of 20% over previous state of the art. (CVPR 12)

NEXT: Crowded and clutter scenarios with multiple agents




@Coordinated Activities

State of the Art




(ICCV 13)

Next: From seemingly normal individual activity to suspicious collective behavior.




@Who/What Where doing What

(stationary,
vehicle)
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go, vehicle)

(stationary,
People)

(smooth,
People)

Automatically joint segmentation and event detection
Uses both appearance and dynamics
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In-the-Exit Contraflow Detection
Deployed at CLE Airport

Two different exits, different geometry
~0 miss-detections, 1 to 2 false alarms/week

Tag-and-Track across camera network
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Activity Recognition, Object Left Behind:
Theory developed, tested on simple scenarios

Dynamics as a key enabler to handle data deluge and
obtain actionable information in a timely fashion.




THANKS!!



