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Model-Based Iterative Reconstruction 
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Scanner forward model 
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•Need to accurately and efficiently model the: 

•3D forward projection geometry 

•Detector and source geometry and physics 

•Noise and distortion 



Data model 
• Taylor expansion of Poisson log likelihood produces  

 

 

 

•                             where                are measured photon counts 

 

• Matrix A is a linear projection operator  

 

• D is a diagonal noise weighting matrix 

 

 

 

 

• MBIR uses information that FBP throws away! 

• Uses photon counts to estimate noise variance 

• This results in a data dependent ill-conditioned optimization problem 
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Multi-Core Parallelization of ICD 
• Implemented 

• Parallel ICD on 24 core shared memory Linux machine with p-threads 

• Speedup allows for fast algorithm development 

• Performance issues 
• Computation tends to be limited by memory/cashing speed, not computation 

• Memory must be organized as view, channel, row (slow to fast variables) 

• Allocation of slices to cores must balance computation/bandwidth load 

• Architecture of parallel algorithm 
• Each core is responsible for updating voxels in a range of slices 

• Z-line updates: 

• A Z-line is a set of voxels along z, but at the same (x,y) position 

• Processors do ICD update along Z-lines 

• Leads to much better cash efficiency 
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Boundary condition and buffer slices 

• For helical scan reconstructions, it is necessary to 

reconstruct buffer slices on both sides of the ROI 

• Buffer slices are discarded, but required for accurate reconstruction 

• With of each set of buffer slices is approximately half the width of 

detector array 

• Computation associate with buffer slices is overhead 
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Results: resolution and object discrimination 
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DFM MBIR 



Results: metal artifact reduction 
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DFM MBIR 



Mixed power law data weighting 
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• Want to adjust the data weighting in the cost according to the suspected 

presence of metal in each projection measurement 
 

• First using an initial reconstruction,       , define a metal indicator for each 

projection    ,  
 

 

 

 

 
 

• Mixed data weighting: 
 

 

where      is the target scan count and        is the air scan count  
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Results: power law data weighting 
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Results: object discrimination 
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DFM MBIR 



Results: metal artifact reduction 
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DFM MBIR 



Results: artifact reduction 
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DFM MBIR 



Detector afterglow correction 
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Fan angle offset correction 
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Industry/University Collaboration 
• My background: 

• 12 year GE relationship: Veo and 3T MRI 

• 20 years HP relationship: Technology in millions of printers 

• Signal Processing: Applied math, algorithms, physical models 

 

• The opportunity: 
• Technology transfer from university to large company 

• Build on company’s infrastructure 

• Provide university an efficient path to impact 

 

• The obstacles: 
• Trust, IP, information sharing, risk 

• Understanding need to make money 

• Understanding need to publish and educate 

 

• The keys to success: 
• Industry researcher who takes ownership 

• University researcher committed to success 

• Technology that will differentiate industry in the marketplace 



Summary 

• MBIR offers great potential in baggage screening 
• Improved resolution 

• Reduced artifacts 

• Increased design flexibility 

• Model accuracy is important 

• Computation remains a challenge 

 

• Key’s to success in industry university partnership: 
• Trust 

• Committed team of researchers on both sides 

• Tight integration of research with clear goals 
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MBIR/Veo Publications and Patents 
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Distance-Driven (DD) forward projector 

  CT forward projection is modeled by a linear matrix operation. 

 

 

 

 

 

 The j-th column of A corresponds to projection of voxel  j. 

 

 In DD model, each voxel is flattened along the dimensions parallel to 

detector face. 

 Each column entry is calculated as a product of XY-plane projection Bi,j, 

and Z-direction adjustment factor Ci,j  for i-th detector element. 
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 The forward projection matrix A is calculated as                        .  

DD forward projector calculation 
 

Ai, j = Bi, j ´ Ci, j

XY-plane Z-direction 
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Poisson noise model 

• Use a 2nd order Taylor series expansion of true log likelihood 

 

 

 

 
where 

 

 

 

 

 
• A - forward system matrix 

• D - diagonal weighting matrix 
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Iterative Coordinate Descent (ICD) 
• Iteratively match each pixel (i.e. each column of A) 

• Select each pixel to minimize total cost 

 

 

 

 

 

 

• Issues: 

• Efficient update by using sinogram error state 

• High spatial frequencies converge first  

• Benefits from good initial condition 
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*K. Sauer and C. Bouman, “A Local Update Strategy for Iterative Reconstruction from Projections,” IEEE Trans. on Sig. 

Proc., vol. 41, no. 2, pp. 534-548, Feb. 1993. 
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Why ICD ? 

•  Advantages: 
• Fast convergence at high spatial frequencies 

• Can be initialized with FBP 

• Sequence of 1D updates provides flexibility 

• Easy to enforce positivity constraints 

• Robust to non-idealities  

• Disadvantages 
• Poor low frequency convergence 

• Irregular memory access 
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Conventional ICD 

Homogeneous ICD with zero skipping 

NH-ICD without interleaving 

Interleaved NH-ICD 

RMSE Convergence Plots for NH-ICD 

• NH-ICD 

• Reduces transients at early stage allowing faster convergence 

• Interleaving in early iterations further improves convergence speed 

Zhou Yu, Jean-Baptiste Thibault, Charles A. Bouman, Ken D. Sauer, and Jiang Hsieh, “Fast Model-Based X-ray CT 

Reconstruction Using Spatially Non-Homogeneous ICD Optimization,” to appear in the IEEE Trans. on Image Processing. 
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Image prior model 

• 3D regularization using 26 neighbors 

• Design to: 

• Preserve high contrast edges 

• Enhance low contrast sensitivity 

U x( ) =
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j ,k{ }ÎC

å

r(D) = D Total Variation/Compressed Sensing 

r(D) = D
p
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Generalized Gaussian MRF 
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D

q
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with p = 1.2 and q = 2

Q-GGMRF 

Jean-Baptiste Thibault, Ken Sauer, Charles Bouman, and Jiang Hsieh, “A Three-Dimensional Statistical Approach to 

Improved Image Quality for Multi-Slice Helical CT,” Medical Physics, pp. 4526-4544, vol. 34, no. 11, November 2007. 
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Prior: Q-Generalized Gaussian MRF 

• Define neighboring pixel difference Δ=xs-xr . The q-GGMRF prior is 

defined as    

 

 

 

 

 

 

 

• Controls both low and high-contrast behavior 
 

• Parameter c is a soft transition point such that 
 

• Gaussian MRF (GMRF) prior is the special case where  

p=q=2,  i.e.  
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Non-Homogeneous ICD (NHICD) 

• Objective: find good correlation between update map 

and true RMS error at different stages of 

convergence Top 5% pixels with largest 

update values at iteration 1 

Top 5% pixels with largest 

RMS error at iteration 1 
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Model-Based Iterative Reconstruction 

• Our framework is the maximum a posteriori (MAP) estimate 

 

 

 
 

• Vector y is the projection measurements, and x is the image 

 
• MBIR is used in GE Healthcare’s Veo product which is sold in 

US and European markets since 11/2011 
 

• We are working with Morpho Detection to investigate the use of 

MBIR in an EDS system for aviation security 
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Evaluation for EDS performance 
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• Evaluated qualitative impact of model-based reconstructions 
on proprietary automatic threat detection (ATD) algorithms 
 

• Improved segmentation 

• Improved object identification/classification 

• Improved separation of adjoining objects 

• Reduction in false alarms 

 

• In addition, the improvements in reconstruction quality 
provide for better operator experience  

 

• Reduced cost of additional detection 


