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S % Introduction

Goal: detect presence of threat
substances in carry-on baggage

Primary constraints/challenges:

— Fast scan time (< 5s/bag) for high
throughput

— Good specificity and sensitivity to %
broaden threat space and reduce false
alarm rate

 Approach: compressively acquire and
combine transmission and coherent
scatter signals to obtain material-
specific signature at each voxel

* Results: structured illumination +
energy-sensitive detection make real-
time imaging possible
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Angle-dispersive

Study O dependence of
scatter for fixed E
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Techniques to measure f(q)

Energy-dispersive

e Study energy dependence
of scatter for fixed 0

Fixed Bragg Diffraction Angle




Coherent scatter imaging

Coherent scatter computed tomography (CSCT)
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Coherent scatter computed tomography (CSCT)

Rotate/translate object
Multiplexed
State of the art: several minutes/2D slice

Selected volume tomography

Scan object/collimators
Non-multiplexed
State of the art: several seconds/voxel

Delfs et al., Appl. Phys. Lett. 88, 243506 (2006)

Angew. Chem. Int. Ed. 50, 10148 (2011)

Harding et al., Phys. Med. Biol., Vol. 35, No 1, 33-41 (1990)
Dicken et al., Opt Exp. Vol 19, 6406 (2011)

Coherent scatter imaging
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Coherent scatter imaging

Coherent scatter computed tomography (CSCT)
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:J#@E\'r Speeding things up

* Increase incident x-ray flux 7|
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scatter collimator

* Increase incident x-ray flux
- more current

transmission
detector row

Transmission
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Coded aperture x-ray scatter imaging
(CAXSI)



fﬁs?’ff Pencil beam coded aperture x-ray
scatter imaging (CAXSI)

2D energy-integrating
Coherent scatter detector

object

Filtered x-ray

pencil beam Coded

aperture z

* Angle-dispersive

* Use “narrowband” source

* Use mask to triangulate scatter origin in range
* Snapshot acquisition

MacCabe et al., Opt. Exp. 20, 16310 (2012) 12



P /! .
*([,%?‘*F Pencil beam coded aperture x-ray

scatter imaging (CAXSI)

object

Filtered x-ray
pencil beam

aperture

* Angle-dispersive
e Use “narrowband” source

* Use mask to triangulate scatter origin in range \

* Snapshot acquisition
MacCabe et al., Opt. Exp. 20, 16310 (2012)

Coherent scatter
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‘ﬁlgg?"f Pencil beam coded aperture x-ray
scatter imaging (CAXSI)

2D energy-integrating
Coherent scatter detector

object

Filtered x-ray
pencil beam

llllllllllll

aperture

* Angle-dispersive e AN
e
* Use “narrowband” source i (

e Use mask to triangulate scatter origininrange « _ « N\
* Snapshot acquisition
MacCabe et al., Opt. Exp. 20, 16310 (2012) 14



Resolution:
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“(f - Snapshot fan-beam tomography

Extend results to fan-beam geometry
* Get range, cross-range, and angular scattering profile

Animation of experimental assembly Experimental Setup at Duke MMIL

K. MacCabe, A. Holmgren, M. Tornai, and D. Brady, "Snapshot 2D tomography via coded aperture x-ray scatter imaging,"
Appl. Opt. 52, 4582-4589 (2013).



ﬁfr Snapshot fan-beam tomography
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K. MacCabe, A. Holmgren, M. Tornai, and D. Brady, "Snapshot 2D tomography via coded aperture x-ray scatter imaging," 17

Appl. Opt. 52, 4582-4589 (2013).



. /f
fﬁ Multi-shot fan-beam tomography

Photo of object Volume reconstruction

Toy army man
(3 spatial + 1 material)

Ticking clock
(2 spatial + 1 temporal + 1
material)

K. MacCabe, A. Holmgren, M. Tornai, and D. Brady, "Snapshot 2D tomography via 18
coded aperture x-ray scatter imaging," Appl. Opt. 52, 4582-4589 (2013).



Coded aperture coherent scatter
spectral imaging (CACSSI)



Broadband illumination

Monochromatic source
detector

* Many photons thrown away
* Specific detector locations

O required

Coherent
scatter
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Pencil beam geometry

energy-sensitive
detectors

COded apertUre
Coherent scatter

\\\“\\\\

N DL T i

x-ray pencil
beam
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J. A. Greenberg et al., Snapshot molecular imaging using coded energy-sensitive detection (2013) [under review]



Raw measurements

Simulation Experiment
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Single object reconstruction

HDPE at z=252 mm

Converting to correlation map

200

—Estimate
—Reference
Interpolated ref.
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Normalized intensity
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J. A. Greenberg et al., Snapshot molecular imaging using coded energy-sensitive detection (2013)



Multi-object reconstruction

Input Beam

Reconstructed correlation map

C at z=237

1 .
| fest
— ftruth

0.5¢ : 0.57
0 _j‘JL\_\T[’—[\_L/_ 0
0 0.1 0.2 9.3 0.4 0 0.1 0.2 9.3 0.4 05
q[1/A] q[1/A]
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Water-like object
discrimination

Different concentrations

H,0 + vs 50% H,0
of H,0 + Methanol 2 M
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J. A. Greenberg et al., Snapshot molecular imaging using coded energy-sensitive detection (2013) [under review]



CACSSI resolution

Predictions
||
\
— . ‘\ —=27=200mm | —
\ ===z=400 mm
. z=600 mm ] —
< o 4
[ /] [ /
Observations

Az~5 mm with
Ag<0.02 1/A

J. A. Greenberg et al., Snapshot molecular imaging using coded energy-sensitive detection (2013) [under review]
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correlation

¢ (

Dependence on mAs

o o o
w S~ O

o
N
-

corr. = Ve
S
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Only ~100 mAs required to
identify a range of materials
with < 1% of total scatter
signal collected



Lingering issues

e Bulky

— Detectors should be object thickness away from
mask

e Difficult to scale to full 4D data cube

— hard to code all dimensions
— need higher-dimensional detector arrays (S)

e Bottom line: still too slow

— Need more efficient use of source photons

28



Structured illumination coherent
scatter imaging (SICSI)



:kj.‘;\* . . .
g Structured illumination

Measurement strategy

* Use code to modulate illumination before object

* Object moves through beams

e Acquire many spectra at different times using
energy-sensitive pixels: g(E, t, X, y)

detectors

J. A. Greenberg et al., Structured illumination for tomographic molecular imaging (2013) [under review]



Structured illumination

Measurement strategy

* Use code to modulate illumination before object

* Object moves through beams

e Acquire many spectra at different times using
energy-sensitive pixels: g(E, t, X, y)

detectors

Advantages

e Optimal use of source photons (no
spectral/minimal spatial filtering)

e Scales easily up to 4D

* Fewer detectors needed (sparse array only)

* Allows for simultaneous tomosynthesis

* Compatible with multiple sources

* Allows for adaptive implementation

* Simple modification to existing machines
» Open up collimation
» Add scatter detectors




“(f - Example: modulated fan beam

* Source: conventional x-ray tube
» Mask: periodic series of holes along a line t(x) = (1+sign[sin(u x)])/2

 Detector: Single, energy sensitive pixel

4

detectori /\
T .
l
object : 0 15
l 5
! 10
, 8
: :
—

mask

%D 40 50 60 70 80 90 100
E [keV]

source
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J. A. Greenberg et al., Structured illumination for tomographic molecular imaging (2013) [under review]



Far

n Example: modulated fan beam

1%

* Source: conventional x-ray tube
» Mask: periodic series of holes along a line t(x) = (1+sign[sin(u x)])/2
 Detector: Single, energy sensitive pixel
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J. A. Greenberg et al., Structured illumination for tomographic molecular imaging (2013) [under revie\yR/]



Mask (x-ray image)

Source/collimation 15k (moving) detector

(125 keV) object

3 mm thick Pb
1.5 mm diameter holes
* 3 mm center-to-center spacing
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Single object reconstruction

Al powder at z=640 mm, x=-3 mm
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J. A. Greenberg et al., Structured illumination for tomographic molecular imaging (2013) [under review]
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3 Multi-object classification

Correlation Map
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g{}[x/ Dependence on mAs

norm. correlation

0.5} . ®* e ® *Notes™
O
0.4 © * Only use 1 pixel
oal = Collect =0.1% of scatter!

' e Accurate results down to 5 mAs
0.2r (defined per integration time)
o1l \ = Corresponds to ~1 cm/s belt

' speed with 10 mA source

00 | 510 100

mAs

Going forward

* Use more pixels

- Collect more photons (e.g., 10-100x) Real-time (>10
- beFter conditioning (less compressive) cm/s) operation
* Use higher mA/kV source (e.g., 160 kV at 90 mA) with real suitcases
* Combine with transmission-based tomosynthesis

 Use full cone beam




Summary

Arrays of energy-sensitive detectors are crucial
for real-time operation

Minimal source filtering with structured
illumination yields a drastic speed-up in
required imaging time

Integration of scatter and transmission is
necessary

Prototype construction is currently underway!
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