

Scatter Attenuation Tomography (SAT): A Novel X-Ray Technique for Material Identification

Peter Rothschild, Paul Bradshaw, Martin Rommel, Lou Wainwright American Science & Engineering

Preview of Conclusions

- SAT is a powerful new x-ray technique for identifying concealed materials
 - Very robust to surrounding clutter
 - Highly specific (sensitive to both density and atomic number)
 - Beam hardening effects can be easily corrected for
 - Well suited to screening liquids or solids
- SAT is a point interrogation method better suited to individual items or level 2 inspection
 - Acquisition times are typically on the order of 1-5 seconds per interrogation
 - Level 1 screening applications for baggage would require fairly intense x-ray sources

HOW CAN WE USE INCOHERENT (COMPTON) SCATTER OF X-RAYS TO CHARACTERIZE OR IDENTIFY CONCEALED MATERIALS?

Prior Art (with Monochromatic Sources)

G. Harding; Philips, 1983

S. Norton; U.S. Dept. Commerce, 1995

G. Harding & J.M. Kosanetzky; Philips, 1989

Y.S.Ham; Korean Atomic Energy R.I., 1998

Prior Art (with X-Ray Tubes)

K.H. Reiss & K. Killig; Siemans, 1978

G. Harding; Philips, 1988

G. Harding & J.M. Kosanetzky; Philips, 1989

G. Harding; 2011

13 August 2010

Moving the X-Ray beam is equivalent to moving the embedded source

ASBE

Take Ratios of Signals in Each Detector:

$$\frac{L_2}{L_1} = \frac{I_2}{I_1} \frac{V_F}{V_N} \frac{\Delta t_2}{\Delta t_1} e^{-\mu\Delta X}$$
$$\frac{R_1}{R_2} = \frac{I_1}{I_2} \frac{V_F}{V_N} \frac{\Delta t_1}{\Delta t_2} e^{-\mu\Delta X}$$

Multiply 2 equations and

solve for $\mu \rightarrow$

 $I_1, I_2, \Delta t_1, \Delta t_2$ disappear

$$N_{SAT}(\boldsymbol{E}_s) = \mu(\boldsymbol{E}_s) = \frac{1}{2\Delta X} Ln \left[\frac{L_1}{L_2} \frac{R_2}{R_1} \right] - C$$

where $C = \frac{Ln\left(\frac{V_N}{V_F}\right)}{AV} \sim 0$ (C can be calculated exactly from geometry, but is just an offset)

$$\rightarrow$$

$$N_{SAT}(\boldsymbol{E}_s) = \mu(\boldsymbol{E}_s) = \frac{1}{2\Delta X} Ln \left[\frac{L_1}{L_2} \frac{R_2}{R_1} \right]$$

(Scatter Equivalent of the CT Number)

SAT Number (Scatter Analog of CT Number)

$$N_{SAT}(E_s) = \mu(E_s) = \frac{1}{2\Delta X} Ln \left[\frac{L_1}{L_2} \frac{R_2}{R_1} \right]$$

■N_{SAT} depends only on *measurable* values L₁, L₂, R₁, R₂

Does not require precise dwell times of beams (integration times all cancel)

Measurement of N_{SAT} is <u>not</u> affected by attenuation of the incident beam or the scattered beams

Not sensitive to surrounding "clutter"

Using a pair of energy-discriminating detectors and a polychromatic
Bremstrahlung x-ray source allows N_{SAT} to be measured at multiple energies

- Yields independent measurements of density (ρ) and effective atomic number (Z_{eff})
- Value of N_{SAT} is immune to beam hardening if the width of the energy bins is kept small
- Beam hardening can be compensated for by measuring the mean energy of the scatter in a given energy bin and applying a correction factor

HOW CAN WE USE SAT?

2010: 50kV SAT Bottled Liquid Scanner (BLS)

Red/Green Light Notification

Single Touch-Button Operation

Sample Chamber

70kV allows much wider separation of low and high energy bins improved ρ and Z_{eff} determination

SAT Tabletop BLS Geometry

Spectra Acquired on 50kV BLS System

System Affected by Beam Hardening

- Energy bins are fairly wide on the 50kV BLS system due to low power x-ray source (ΔE ~ 12keV)
- This means that the mean energy of the scattered x-rays in each bin can vary with container type, changing the measured SAT Numbers
 - Use a classifier algorithm that compensates for this
 - Can use measured count rate or the mean energy in each bin to determine the container type
 - Use five separate classifiers for each major container category
 - e.g. thin plastic, thick plastic, thin glass, medium glass, thick glass

50kV Experimental SAT Data for Wide Range of Threat Liquids

Experimental SAT Data for Some Specific Liquid Threats

ONE SOLUTION IS A VALIDATION SYSTEM THAT USES A BARCODE SCANNER

Barcode is scanned as bottle is placed inside system

System simply confirms that the SAT Numbers are what you would expect for the item being inspected

ASRE

Barcode Identifies Exact Item and "Validates" It

Next Steps for SAT BLS

 The 50kV SAT Tabletop system underwent testing for ECAC certification in Germany at Fraunhofer (Europe's largest application-oriented research organization)

- 50kV system achieved Category B Standard 1 certification
- 10 seconds/bottle (plastic) and 20 seconds bottle (thick glass)
- System was upgraded from 50kV to 70kV to attempt Standard 2 certification
 - Greatly decreased scan times (2-5 sec/bottle)
 - Approximately 1 second / bottle for a validation system with a barcode scanner
 - 70kV system has not been sent for ECAC certification testing (decision by AS&E not to pursue liquid scanning)

SAT FOR BAGGAGE INSPECTION

Concept for 100% Inspection of Baggage

- In principle, a sweeping x-ray beam and two arrays of collimated scatter detectors can give 100% coverage of baggage.
- Each pair of detector elements analyzes a horizontal slice of the bag
- Detectors collimated in only one dimension are vulnerable to multiple scatter which can affect the SAT Number measurement
- The beam intensity must be very high for realistic throughput rates (10's of kWs)

13 August 2010

13 August 2010

Detector

Detector	
Collimator Beam Select	or
Inspection Target	

120kV Laboratory Test Stand

-X-ray tube

Spectra Acquired with 120kV Test Stand

Effect of Beam Hardening for water with 120kV System

AS&E

Experimental Results at 120kV for Liquid Identification

ASRE

SAT FOR CARGO INSPECTION

Concept for Level 2 Inspection of Cargo

*Rotation Angle of detectors selects depth of object being interrogated

Simulation of Organic Material Identification in Cargo at 6MeV

Rotation Angle of Material Block (degrees)

Cubes of material placed in 36" crate of cotton cloth 6 MeV Bremstrahlung spectrum 2.8x10¹⁰ x-rays in each beam

ASRF

Simulation of High-Z Material Identification in Cargo at 6MeV

Size of Material Block (cm)

Cubes of material placed in 36" crate of cotton cloth 6 MeV Bremstrahlung spectrum 2.8x10¹⁰ x-rays in each beam

ASRE

Conclusions

- SAT is a promising new x-ray technique for identifying materials
 - Very robust to surrounding clutter
 - Highly specific (sensitive to both density and atomic number)
 - Beam hardening effects can be easily corrected for
- SAT is a point interrogation method better suited to level 2 inspection
 - Acquisition times are typically on the order of 1-10 seconds per interrogation
 - Level 1 screening applications would require fairly intense x-ray sources
- We believe that there are many potential applications for this technology
 - Non-Destructive Testing (NDT)
 - Material characterization, void detection
 - Counterfeit pharmaceutical detection
- Selected for funding under DHS BAA 13-05 (in collaboration with LLNL, Tufts, Multix)

THANK YOU

13 August 2010

38

SAT WITH MONOCHROMATIC SOURCES

Concept for SAT with Radioactive Sources

Simulation Results (10cm Cube at Center of 1m Sphere of Cotton)

AS®E

Future Developments

Investigate Use of SAT for Non-Destructive Testing Applications

- Material classification
 - Density Measurement
 - Effective Atomic Number Measurement
- Void detection in Uniform Materials
- Mining applications
 - Soil or rock classification
 - Metal content of ore
- Counterfeit Pharmaceutical Detection
- Quality Control

SAT Related Patents

Two Issued SAT Patents: AS&E (Rothschild)

June, 2009

April, 2011

(12) United States Patent (10) Patent No.: US 7,924,979 B2 Rothschild (45) Date of Patent: Apr. 12, 2011 (54) SCATTER ATTENUATION TOMOGRAPHY 250/416 TV 4.196.351 A 4/1980 Albert 4,196,351 A 4,357,535 A 4,535,243 A 4,598,415 A 4,672,615 A 4,694,457 A 4,730,350 A 4,799,247 A 4 1980 Albert 1/1982 Haas 8/1985 Peschmann ... 7/1986 Luccio et al. 6/1987 Kelly et al. 9/1987 Kelly et al. 3/1988 Albert 1/1989 Annis et al. 9/1989 Gomberg 250/363 . 378/119 . 372/2 . 372/2 (75) Inventor: Peter J. Rothschild, Newton, MA (US) (73) Assignce: American Science and Engineering, Inc., Billerica, MA (US) (*) Notice: Subject to any disclaimer, the term of this 4,864,142 A 250/390.04 patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. (Continued) FOREIGN PATENT DOCUMENTS (21) Appl. No.: 12/551,972 DE 26 39 631 3/1998 (Continued) (22) Filed: Sep. 1, 2009 OTHER PUBLICATIONS Prior Publication Data Harding, G., "On the Sensitivity and Application Possibilities of a US 2010/0034347 A1 Feb. 11, 2010 Novel Compton Scatter Imaging System", IEEE Transactions on Nuclear Science, vol. NS-29, Nov. 3, Jun. 1982, pp. 1260-1265. Related U.S. Application Data (63) Continuation-in-part of application No. 12/489,620, filed on Jun. 23, 2009, now abandoned, which is a continuation of application No. 11/843,185, filed on Aug. 22, 2007, now Pat. No. 7,551,718. (Continued) Primary Examiner - Chih-Cheng G Kao (74) Attorney, Agent, or Firm - Sunstein Kann Murphy & Timbers LLP (60) Provisional application No. 60/823,328, filed on Aug. 23, 2006 (57) ABSTRACT (51) Int. Cl. G01N 23/201 A system and methods for characterizing an inspected object (2006.01) on the basis of attenuation determined from pair-wise illumi-nated voxels. A beam of penetrating radiation characterized by a propagation direction and an energy distribution is (52) U.S. CL ... scanned relative to an object, while scatter detectors with See application file for complete search history. collimated fields-of-view detect radiation scattered by each voxel of the inspected object that is intercepted by the inci-dent beam of penetrating radiation. By calculating the attenu-ation of penetrating radiation between pairs of voxels illumi-References Cited U.S. PATENT DOCUMENTS ation or penetrating random reveal penes or vores immi-nated sequentially by the incident beam, a tronographic image is obtained characterizing the three-dimensional distribution of attenuation in the object of one or more energies of pen-etrating radiation, and thus of various material characteris- Construction Construction 2.0574,011 A 2.1954 3.9355,089 A 5.1976 McInterson 5.1976 McInterson 5.1976 McInterson 7.1977 Main 7.19777 Main 7.19777 Main 7 250/369 250/399 250/445 T 250/445 250/402 250/402 tics 20 Claims, 14 Drawing Sheets **1**4 <u>12</u> Beam at t ~17 Beam at to -18

(65)

(56)

ADAPTIVE CLASSIFIER WITH A BARCODE SCANNER

Adaptive Classifier with Barcode Scanner

Adaptive Classifier with Barcode Scanner

Adaptive Classifier with Barcode Scanner

