DHS Applications of PaX Source

Rajiv Gupta, MD, PhD

Neuro and Cardiac Radiology Massachusetts General Hospital Harvard Medical School Boston, MA

Why should DHS Care?

- X-ray phase provides an independent signature:
 - Attenuation: Eff. Z
 - Phase: Eff. ED

Threats and stream-of-commerce may have different signatures

MGH/MIT PaX source enables PCI

Overview What is Phase Contrast Imaging? Is there experimental demonstration? How can we harvest phase? How can we achieve coherence? How does PaX do PCI?

What is Phase Contrast Imaging?

Phase Effect on Wave front

Complex refractive index: $\eta = 1 - \delta + i\beta$

Contrast Mechanisms

Complex refractive index: $\eta = i\beta + (1 - \delta)$

- Attenuation:
 - Depends on β
 - Path length
 - Photoelectric effect
 - Compton scattering
 - Depends on Z

Phase change:

- Depends on δ
- Path length
- Depends on
 Electron Density

Magnitude of Attenuation and Phase Contrasts

Material	µ (cm ⁻¹) at 60keV	Ф (ст ⁻¹) at 60keV	Ratio
H2O	0.2061	195.5	949
dH2O	0.2267	215.1	949
Ethenol	0.1582	156.6	990
Glycerin	0.2477	140.7	568
Fat	0.1793	180.7	1008
Liver	0.2174	205.2	944
Sources:			
ICRP (1975)			
Woodard and White (1986)			

Attenuation vs. Phase Contrast

Refractive index of soft tissue

Overview What is Phase Contrast Imaging? Is there experimental demonstration? How can we harvest phase? How can we achieve coherence? How does PaX do PCI?

PCI at Photon Factory, KEK Tsukuba

□ Beam-line BL-14Cmono Vertically polarized 31KeV X-ray beam □ Filed-of-view: 2.5x3cm Rotational stage for the specimen

XDFI: X-ray Dark-Field Imaging

XDFI: X-ray Dark-Field Imaging

Experimental Setup

X-ray Window MC

Specimen LAA

CCD

Coronary Plaque Imaging

Catheter Angiography: LAO cranial view CT Angiography: LAD, LCX and RCA

Plaque: Absorption and Phase

Plaque: Phase CT

Overview What is Phase Contrast Imaging? Is there experimental demonstration? How can we harvest phase? How can we achieve coherence? How does PaX do PCI?

TIE-based PCI imaging

Overview

What is Phase Contrast Imaging? Experimental demonstration of PCI

How can we harvest phase?

How can we achieve coherence?

PaX Architecture

MGH/MIT PaX Source: Basic Concept

Trick 1: Use ultra-small focal spot size for x-ray Trick 2: Keep the object far away from the source, and the detector far away from the object Trick 3: Deduce phase from intensity images

Experimental results Plastic microspheres (Cospheric, Inc):

Projection image

Reconstructed phase image

Overview What is Phase Contrast Imaging? Is there experimental demonstration? How can we harvest phase? How can we achieve coherence? How does PaX do PCI?

PaX Source – System Architecture

Collimated electron beams with µm-sized focal spot

X-ray beam

Electron gun array with ballasted, double gated field emitters

Micro-channel cooled, copper anode with W-Be windows

Field-emission Cathode Array

Fabricated Chip Layout

Side view

MGH/MIT PaX Source

First Image: Cadaver Wrist

Summary

X-ray phase represents an untapped contrast mechanism that can distinguish materials that look similar on conventional X-ray imaging

- There are ways to:
 - Make coherent X-rays
 - Deduce phase signatures

Team

Rajiv Gupta

Yongjin Sung Synho Do

Julien Dinkel Irene Wang

Richard Lanza

Jonah Jacob SRL

Geoff Campbell

John Pasour NRL

THANK YOU!

Proof that Micro-focus can do PCI

PCI with a micro-focus source

Polyethylene bead (~ 520 micron): Creates a gradually varying phase Cover glass (1 mm thick): Creates a discrete jump in phase

PCI makes the bead and cover glass, which are essentially transparent in attenuation X-rays, visible.

Voltage: 40 kVp; Source-to-sample: 44 cm; Sample-to-detector: 159 cm

How to derive Quantitative Phase Information

Pohang Light Source (So Korea)

Siemens Phantom at different distances

Z = 0.00 (m)

Transport of Intensity (TIE) Equation

Continuity Equation for Intensity Transport

I: intensity ϕ : phase

$$\frac{2\pi}{\lambda}\frac{\partial I}{\partial z} = -\nabla_{\perp} \cdot (I\nabla_{\perp}\phi)$$

M. Teague, JOSA (1983). $\nabla_{\perp} \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$

- 'Conservation of intensity'
- Phase recovery from intensity derivative
- Partially coherent illumination