Contraband Detection in Air Cargo Containers

Algorithm Development for Security Applications 2014

Steve Korbly, Ph.D. Passport Systems, Inc.

Work Supported in part by U.S. Department of Homeland Security Domestic Nuclear Detection under competitively awarded Contract No. HSHQDC-12-C-00059. This support does not constitute an express or implied endorsement on the part of the government. All claims and representations contained herein are those of Passport Systems, Inc. alone

What Could TSA Obtain?

- Integrated solution to detect explosives, nuclear material and other contraband
- Automated detection Think CT machine for air cargo
- 3D volumetric data of density and effective Z for region of interests
 - Available for operator review
 - Locates any potential threat
- Ability to resolve regions of interest to the elemental level
- Increased throughput due to larger scan volume (LD size)
- Low False Alarms due to orthogonal information
 - Alarms match in density, effective Z, and elemental ratios
- Ability to clear containers with confidence

EZ-3D Volumetric Data of Density and Effective Z

Color Scale = Zeff Range

Transparency = Density

- Cargo is scanned slice-by-slice and reconstructed in 3D
- The voxels are aggregated into regions-of-interest
- These ROI's are analyzed for targeted materials at elemental level

EZ-3D Volumetric Data of Density and Effective Z with Targeted Materials

Cargo measurements

Standalone Cargo Scanning Facility

Design for facility to be installed at Port of Boston

Passport's Cargo Scanner

Copyright © 2014 Passport Systems, Inc. All Rights Reserved.

Passport Scanner Technologies

Beam

Measured Particle

9 MeV Bremstrahlung Photons

Photons:Effective-Z (EZ-3DTM)Nuclear Resonance Fluorescence (NRF)Neutrons:Photofission (prompt)

Scan	Algorithm	Functionality / Output		
Primary	EZ-3D [™] Reconstruction	3-D density and Effective-Z map Anomaly identification/3D location		
Primary	Transmission X-ray	Anomaly 2D location & density Shape/edge recognition		
Primary	Portal Networked Detection System	Identification and localization of radioactive sources		
Primary & Secondary	Photofission	Identifies presence of fissionable material		
Secondary	NRF 3D	Complete isotopic composition in the region-of- interest		
	Anomaly Classification	Performs data fusion, classifies anomaly as threat or innocuous, predicts detect/clear time		

Scan Geometry and Process

Primary Scan:

- Beam scans in the beam plane
- Container traverses the beam
- \rightarrow 3D backscatter image (EZ-3DTM)
 - ~15 s/20' container
 - 3D map of effective Z & density
- \rightarrow 2D transmission image
- \rightarrow 2D neutron image
 - Fissionable Material Alarm
- \rightarrow ROIs for secondary scan

Secondary Scan – ROI inspection:

- PNPF, beam dwell on ROIs (~seconds)
 - Fissionable Material Alarm
- NRF, beam dwell on ROIs (~minutes)
 - Elemental Composition

EZ-3D[™] Reconstruction

Raw Data from Passport test bed

Reconstructed Image

Constraints

- Transmission
- Attenuation In
- Attenuation Out
- Regularizer Biases toward "likely" solutions

lead

cube

- Position
- Surface area
- Attenuation In
- Photon Attenuation Out
- Neutron Attenuation Out
- Density
- Effective Z

EZ-3D[™] Detection Algorithm

- Utilize Z_{eff} and density image produced by Reconstruction
- Detection: use simple axis aligned upper and lower thresholds on Z_{eff} and density
- Thresholds determined by using reconstructed image voxels from training scans

Threat Object	Туре	Color
Calcium Hypochlorite	Oxidizer	Blue
Butane	Flammable Gas	Yellow
Gasoline	Flammable Liquid	Red
Hydrogen Cyanide	Toxic	Green

NRF Algorithms Overview

NRF Data

- Integrated counts for each line / detector
- Background rate for each line / detector
- Anomaly identification
 - Calculate expected signal count rate for threat hypothesis
 - Calculate likelihood of measured NRF counts for hypothesis
 - Determine if anomalies from user-defined list are present / absent at defined level of PD / FP
- Supporting functions
 - Background estimation
 - Spectrum smoothing

Explosive Detection Example

Potential explosive anomaly detected by density, EZ
Identified as C4 in minutes

Nitrogen, Oxygen, and Carbon as Signatures

10 MeV Simulant Measurements

	C4 (%)		Red Dot (%)		Black Powder (%)	
El.	Mass Spec	NRF	Mass Spec	NRF	Mass Spec	NRF
С	23.0	21.6±2.7	25.2	27.4±3.4	14.8	15.2±2.2
Ν	32.9	41.0±6.7	13.9	11.2±1.8	11.2	11.5±1.9
0	38.8	37.4±3.6	58	61.4±5.9	33.7	41.4±4.3

- Isotopic identification offers clear discrimination between other materials
- NRF technique agrees well with other techniques

Summary

- EZ-3DTM reconstruction novel imaging technique for automated contraband detection
- NRF provides isotopic/elemental identification
- Passport's scanner provides unique solution for
 - Explosives
 - Nuclear Material
 - Contraband
 - Material Identification
- Passport building land/sea cargo container scanner at port of Boston

