

A Mobile X-ray/Neutron Cargo System for Aviation Security Seth Van Liew 5/7/14

The problem and our solution

- Need to detect and identify explosives, drugs, and other contraband
- Other technologies include X-ray diffraction imaging, NQR, trace, dogs, etc.
 - Each have their advantages and drawbacks
- Neutrons are a good complement to x-rays
- We developed a system designed for 170 kV x-rays and 2.5 MeV neutrons with enhanced atomic number determination and object isolation in the presence of clutter
 - Capable of detecting and identifying real threats
 - Fits with current conops of TSA
 - Not a product still some challenges

X-ray attenuations

Attenuation coefficients with X-ray [cm?¹]

1a	2a	3b	4b	5b	6b	7b	8	3	:	lb	2b	3a	4a	5a	6a	7a	0
Н																	He
0.02		1										1	1				0.02
Li	Be											В	C	N	0	F	Ne
0.06	0.22											0.28	0.27	0.11	0.16	0.14	0.17
Na	Mg											Al	Si	P	S	CI	Ar
0.13	0.24											0.38	0.33	0.25	0.30	0.23	0.20
К	Ca	Sc	Ti	V	Cr	Min	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.14	0.26	0.48	0.73	1.04	1.29	1.32	1.57	1.78	1.96	1.97	1.64	1.42	1.33	1.50	1.23	0.90	0.73
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
0.47	0.86	1.61	2.47	3.43	4.29	5.06	5.71	6.08	6.13	5.67	4.84	4.31	3.98	4.28	4.06	3.45	2.53
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1.42	2.73	5.04	19.70	25.47	30.49	34.47	37.92	39.01	38.61	35.94	25.88	23.23	22.81	20.28	20.22		9.77
Fr	Ra	Ac	Rf	Ha				-	1								
	11.80	24.47				1			1				ŀ				
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu	1		
	E 70	0.00	0.40	7 00	7 00	F 00	0.00	0.10	10.17	10.04	11 70	10.10		44.07	-		

Actinides	28.95	39.65	49.08											x-ray
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Vf	Es	Fm	Md	No	Lr
anthanides	5.79	6.23	6.46	7.33	7.68	5.66	8.69	9.46	10.17	10.91	11.70	12.49	9.32	14.07
1	Ce	Pr	Nd	Pm	Sm	EU	Gd	Tb	Dv	Ho	Er	Tm	Yb	U

Neutron attenuations

Attenuation coefficients with neutrons [cm?¹]

1a	2a	3b	4b	5b	6b	7b		8		1b	2b	3a	4a	5a	6a	7a	0
Н															anna Andrew Stranger		He
3.44																	0.02
Li	Be											В	С	N	0	F	Ne
3.30	0.79											101.60	0.56	0.43	0.17	0.20	0.10
Na	Mg											AI	Si	P	S	Cl	Ar
0.09	0.15		1									0.10	0.11	0.12	0.06	1.33	0.03
К	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.06	0.08	2.00	0.60	0.72	0.54	1.21	1.19	3.92	2.05	1.07	0.35	0.49	0.47	0.67	0.73	0.24	0.61
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
0.08	0.14	0.27	0.29	0.40	0.52	1.76	0.58	10.88	0.78	4.04	115.11	7.58	0.21	0.30	0.25	0.23	0.43
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
0.29	0.07	0.52	4.99	1.49	1.47	6.85	2.24	30.46	1.46	6.23	16.21	0.47	0.38	0.27			
Fr	Ra	Ac	Rf	Ha													
	0.34																
					and a strange of the		an a					40		1			
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	1.		
*Lanthanides	0.14	0.41	1.87	5.72	171.47	94.58	1479.04	0.93	32.42	2.25	5.48	3.53	1.40	2.75	2		
	Th	Pa	υ	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
**Actinides	0.59	8.46	0.82	9.80	50.20	2.86								neut.			

Outline

- Using neutrons in security
- A mobile X-ray / Neutron system
- Laboratory hardware and data
- Algorithms
- X-ray / neutron fusion
- Conclusions

What we sought to accomplish

- Positive identification of explosives, oxidizers, and narcotics
- Compact, mobile x-ray / neutron system that could potentially be used in a TSA environment
- Could fit with current conops at TSA
 - 20 cm/s belt speed
 - 1 m x 1 m tunnel size for checked baggage
- A reasonable unit price
 - COTS components wherever possible
 - Smart system integration of components allowing for improved performance
 - Focus on innovative algorithms

Challenges

- Need to deal with clutter
 - Multiple views
 - De-cluttering segmentation algorithms
 - Object isolation algorithms
- Need to improve x-ray Z_{eff} accuracy so benign materials would not be present in alarm region
- Need to develop high resolution, scalable neutron detector
- Need high efficiency neutron detector without liquid scintillator

X-ray Z_{eff}

What we want in a neutron system

Fast

Good detection

Low shielding weight

Pick two of the three!

...and low cost

AS&E

System Concept

- Matched field of views for neutrons and x-rays
 - Use sparse linear arrays for x-rays
- Bottom shooter to reduce neutron shielding weight
- D-D neutron generator (2.5 MeV)
- 170 kV x-ray source

X-ray hardware

AS&E

- 5 views arranged across 48°
- To save space and cost for testing, only implemented three physical views over half the span
 - Ran cargo through backwards to get other two views
- Used a 140 kV source

Neutron hardware

- Due to availability we used a DT generator at 14 MeV and a 3 MV Van de Graaff
- Microstructured neutron detector used
 - Single layer used in experiments however multiple layers possible
- Neutrons were in different locations from each other and from the x-rays, requiring careful setup of the experiment
- Performed long counter normalization
- Measured scatter corrections with shadow bars

Neutron microstructure detector design

Experiments: Phantom

- Registered phantom!
- This phantom was supplied with bar and rectangular stock
- Has dimensions of typical bag
- Can simulate clutter, overlap, etc, but in a controlled environment
- Used for both neutron and x-ray data
- Tested a variety of configurations of different benign 4 materials and threats

AS®E

Better Zeff determination

- Used finer calibration curves than the standard three calibration materials
 - Roughly every half-step in Z
- In addition, attempted to statistically match a given threat material to its own calibration curve using synthetic data
- Used multiple views to obtain better Zeff
- Developed new algorithm using a bulkobject averaging approach to enhance Zeff accuracy

X-Ray Analysis: Algorithm Comparison – New and Old В Technology Industries Two algorithms vs. Actual Zeff 10 point-by-point w/ averaging 9.5 Integral-based O ∗ 9 Actual 8.5 8 ₩97.5

6.5

6

5.5 🙀

HDPE wedge HDPE cyl Graphite wedge

Use or disclosure of data contained on this sheet is subject to the restriction on the title page of this document.

Polycarbonate

PMMA

Sugar

Delrin

Water wedge Teflon wedge

Nylon

Multi-Stage Segmentation - Identify Objects

- We needed a way to automatically segment both overlapping and non-overlapping objects.
- We developed a segmentation algorithm that could do that
- This is a two-pass algorithm that feeds both sets of data to a material stripping algorithm that can then identify contiguous objects and where they overlap with other objects.

Multi-Stage Segmentation – 2 Pass Algorithm

Original B&W image

First Pass: Contiguous Objects Second Pass: Overlapped Objects

Multi-view object isolation

Threat phantoms

• Tested water and ammonium nitrate, which are nearly identical in effective atomic number in x-rays, among others

Suitcase Open with AN and Water

Suitcase Closed with AN and Water

Processed Neutron and X-Ray Images

ASBE BUBBLE Technology Industries

XNT Capabilities: Fused Neutron and X-Ray Images

X-Ray / (MaxSI - Neutron) Fusione Image

XNT Capabilities: X-ray and areal density images

Segmentation and Feature Extraction

- Segmentation is performed on the coregistered images in order to identify all contiguous objects in the XNT overlay.
- This segmentation identifies all regions of the image whether they be air, benign material, or threat.
- Mechanically, segmentation is performed on the high-resolution XNT overlay, and the contours are then transferred to the individual images.
- Each region is then analyzed in both images to ascertain its atomic number and neutron attenuation.
- If a given region alarms based on a lookup table of XNT attenuations, the operator is notified.

Co-Registered Image Segmentation

Segmentation performed once on coregistered image.

Contours propagate to both neutron and x-ray images.

Example neutron and x-ray attenuations

After comparing each region with the lookup table, threats can be identified

Threat	Zeff	Neutron
Thermite	21.5	0.0493
AN	7.41	0.0854
Cocaine	6.31	0.1708
Ecstasy	6.20	0.1844
Meth	5.72	0.2243

Conclusions

- XNT demonstrated to exceed material ID threshold for x-rays or neutrons alone.
- Multi-view x-ray technology dramatically improves material ID and decluttering of cargo.
- "Stackable" neutron microstructure detector is versatile and can work in a variety of environments
- Image and data fusion of neutrons and X-rays demonstrated and can be automated.
- Although the technology is still in development, it looks promising for certain applications
 - In the end, it's all about flux, detection, and shielding
 - ...and cost

Сс	ollaborators	ASPE BUBBLE O Technology Industries
•	Vernon Koslowsky – Lead Scientist at BTI	BTI
•	Ming Zhang – Deformable registration	AS&E
•	Chris Alvino – Image segmentation	AS&E
•	David Walazek – Mechanical Design	AS&E
•	Cristian Dinca, Martin Rommel – Concept and System Design and Simulations	AS&E
•	Dan Wakeford, Marius Facina – Detector Development	BTI
•	Andrew Shinn, Patrick Forget, Ted Clifford – Electronics & FW Design	BTI
•	Darren Locklin, Nick Bray, Richard Davis – Mechanical Design	BTI
•	Gerry Mead, Ken Robins, Matthias Koslowsky – System Assembly & Integration	ו BTI
•	Martin Koslowsky, Nicholas Hartmann – Data Collection & Analysis	BTI
•	Harry Ing, Bob Andrews – Physics Consultation & Technical Oversight	BTI

Acknowledgements

This material is based upon work supported by the U.S. Department of Homeland Security, Science and Technology Directorate, Border and Maritime Division, Office of University Programs, under contract number D11PC20034. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.