

Air Cargo Screening Requirements and Test Methodology

ISRAEL PRIME MINISTER'S OFFICE Nov 4th, 2014

Danny Fisherdannyf@project.gov.ilErez Attiassec.tec@012.net.il

Background

- 1. Israeli cargo is divided into two main paths:
 - 1. Sea Ports: 99%
 - 2. Air Cargo: 1% through three main cargo terminals
- 2. ~160,000 Tons (160 X 10⁶ Kg) via aircrafts

- 3. ~60% by passengers aircrafts
- 4. IPMO is initiating a high priority program for Air Cargo Screening

Main Technical Requirements

- The system will not require disassembling the cargo on the pallet (1.1 X 1 X 1.6 m).
- The system will not require the opening or separation of an individual piece of cargo.
- The screening must in no way harm the contents of the commercial cargo
- False Alarms Low percentage Less than 0.5%

Main Operational Requirements

- Screening time up to 10 minutes
- Mean time between screens 5 minutes at the most
- Mean recovery time after alarm no more than 15 minutes
- Time required to begin screening including calibration and checks less than 30 minutes

Approaches and Principals

- Trace Vapor Detection

- » HVS Preconcentration Analysis
- » Direct sniffing

- <u>Detection of Initiation Device</u>
- Bulk Detection
 - » TBD (next ADSA?)

Technology Comparison

Vapor Pressure

Name	Vapour Pressure (rel. Torr)	Preferred Trace Det. Particle (Vap.)	
TNT	7.7 ppb 5.8·10 ⁻⁶ (25 °C)		
RDX	6.0 ppt 4.6·10 ⁻⁹ (25 °C)	Particle	
HMX	3.95 ppt 3·10 ⁻⁹ (100 °C!)	Particle	
Tetryl	7.5 ppt 5.7·10 ⁻⁹ (25 °C)	Particle	
PETN	18 ppt 1.4·10 ⁻⁸ (25 °C)	Particle	

Relative Conc. in Air

Well, how much is it?

Novel Method for Remotely Detecting Trace Explosives C. M. Wynn, S. Palmacci, R. R. Kunz, M. Rothschild

Basic Calculation

Vapor pressures are often expressed as **relative concentrations in saturated air, rather than in true pressure** units.

Usually expressed in units of ppm, ppb or ppt.

For an ideal gas we have the following relationship between the (vapor) pressure **p** (in

Pascal, with 1 Torr = 133 Pa), the volume V (m3), the quantity of gas \mathbf{n} measured in moles (e.g. 1 mole TNT = 227.13 grams), and the absolute temperature T in Kelvin:

pV = nRT => n/V = p/RT

With **R** being the universal gas constant (8.31 J·mol–1·K–1). The TNT relative concentration at 25 °C for example amounts to 5.8·10–6 torr, or 7.7 ppb, corresponding to about 0.07 ng/cm³

An order of magnitude figure for TNT of 0.1 ng/cc is often encountered

Basic Calculation

Vapor pressures are often expressed as **relative concentrations in saturated air, rather than in true pressure** units.

Usually expressed in units of ppm, ppb or ppt.

For an ideal gas we have the following relationship between the (vapor) pressure **p** (in Pascal, with 1 Torr = 133 Pa), the volume **V** (m3), the quantity of gas **n** measured in moles (e.g. 1 mole TNT = 227.13 grams), and the absolute temperature **T** in Kelvin:

pV = nRT => n/V = p/RT

With **R** being the universal gas constant (8.31 $J \cdot mol - 1 \cdot K - 1$).

The TNT relative concentration at 25 °C for example amounts to 5.8.10–6 torr, or 7.7 ppb,

corresponding to about 0.07 ng/cm³

An order of magnitude figure for TNT of **0.1 ng/cc** is often encountered

A potential for 1microgram / 10 liter saturated air

What can be done?

Look for other molecules?

Preconcentration – integrated or separated for the detector

Better sensitivity? - are these available? (SPR, EC, TR...)

 \bigcirc

A combination is well preferred.

Other ingredients of Energetic Materials [smokeless powders]

The detection of **diphenylamine**, ethyl and methyl centralite, 2,4-DNT, diethyl and dibutyl phthalate by IMS is suggested as a method to indicate the presence of smokeless powders (Analysis of the headspace composition of smokeless powders using GC–MS, GCµECD and IMS. [Forensic Science International (2010) **Almirall** et al]

DNT & DPA are 15-140 X 10³ more likely to be found at vapor phase (vs. PETN or RDX)

ADSA11 - Explosives Detection Air Cargo - Part II Nov 4-5, 2014 Northeastern University Boston MA

Other ingredients of Energetic Materials [Explosives]

Two major groups of compounds can be found:

- Taggants (such as NG, EGDN, DMNB)
- Starting materials or additives (solvents, plasticizers, binders)

Trace Headspace Sampling with Cryoadsorption

recovered mass (ng/L) (20 °C) compounds in the headspace (40 °C) semtex-1A isophorone 102 440 γ -butyrolactone 51.0205 DMNB 22408850 bis(2-ethylhexyl)adipate tagged-C-4 17.5 1.1 DMNB 13560 4460 detaflex γ -butyrolactone 116 250tributyl acetalcitrate 37.3 367 detcord γ -butyrolactone 0.3540 nitroglycerin 224 1110diethyl phthalate 0.00060.03

T.M. Lovestead, T.J. Bruno Anal. Chem., 2010, 82 (13)

Characterization of Three Types of Semtex (H, 1A, and 10)

Comparison of SPME components for Semtex samples.

Component	1A	10	Η
EGDN (detected as ethyl nitrate) ^{a)}	X	X	÷.
4-Phenylcyclohexene ^{a)}	X		
Butyl benzoate ^{a)}		X	
2,6-Ditertbutyl-1,4-benzoquinone ^{a)}	X		
2,4-DNT			X
TNT ^{a)}			X
N', N-Butylphthalimide ^{a)}		X	
4-Formyl-2,6-ditertbutylphenol	X		
3,5-Ditertbutyl-4-hydroxyacetophenone	X		
Ethyl centralite ^{a)}	X	X	
Dibutyl phthalate ^{a)}	X	X	X
<i>i</i> -Propylhexadecanoate	X	X	X
Hydrocarbons ^{a)}	X	X	X

S. Moore, M. Schantz, W. MacCrehan Propellants Explos. Pyrotech. 2010, 35, 1 – 10

Pre-Concentrators

• COTS

• Tailored Made (usually it COST)

On 'Electronic Nose' Methodology

MOS: metal oxide semiconductor EC: electrochemical cell CP: conducting polymer QMB: quartz micro balance SAW: surface acoustic wave PID: photo ionization detector

P. Boeker, On ,Electronic Nose' Methodology Sensors and Actuators B: Chemical (2014)

Vapor Detection - Program Schedule

- Q1/2014
 - Technology survey
- Q3/2014
 - 'First Impression' test FAR oriented
 - 1st Detect MS / Cylindrical Ion Trap (later this year)
 - Bruker MS
 - SEDET 3Q MS
 - PNNL MS / Real-time vapor detection
 - Teknoscan GC/IMS
 - Tracense Silicon nanowires
- Q4/2014
 - Real Life Scenario (concealments)
- Q3-4/2015
 - Field test and Certification

Chemicals

Full access to filed/cargo terminal

Electronics

Fish

	LOD [pg]				
	PETN	RDX	TNT	UN type 1	FAR
Vendor 1	10-100	1-10	10-100	+++	<5%
Vendor 2	1000	100	1000		>5%
Vendor 3	1000	100	100		<5%
Vendor 4	1000	100	1000	+	>5%

Summary

- It's the tip of the iceberg
- But we are prepared for the hard way

