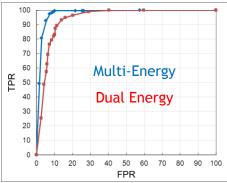


Multi-Energy X-Ray Detection Applied to Liquid and Solid Explosives Tim Rayner, ADSA 12



3 June, 2015

- > The Technology:
 - Multi-energy (ME) x-ray detection and processing
- > What benefit could TSA (and RoW) obtain from my technology?
 - Improved threat detection
 - Improved throughput and passenger facilitation
 - Capable of being retrofit to existing equipment
- > So What?
 - Increase security and lower operating costs (retrofit)
- > Who Cares?
 - Passengers: Faster checkpoints, less aggravation
 - TSA: More efficient checkpoints, lower staffing levels, can be done now

2

- To improve threat detection performance for <u>ALL</u> x-ray based detection systems
- How: Use a new metric for discrimination with high resolution multi-energy detection
- Now: COTS ME detector for conventional line-scan X-rays
 - Hardware: ME100 V3 DAS, retrofit capable
 - Software: ME Image Processing Algorithms (Zeff)
- Future: 2 Directions
 - 1. High Flux Applications: High Flux ME capability for CT applications
 - 2. High Energy Resolution: High Energy Resolution for low flux scatter applications

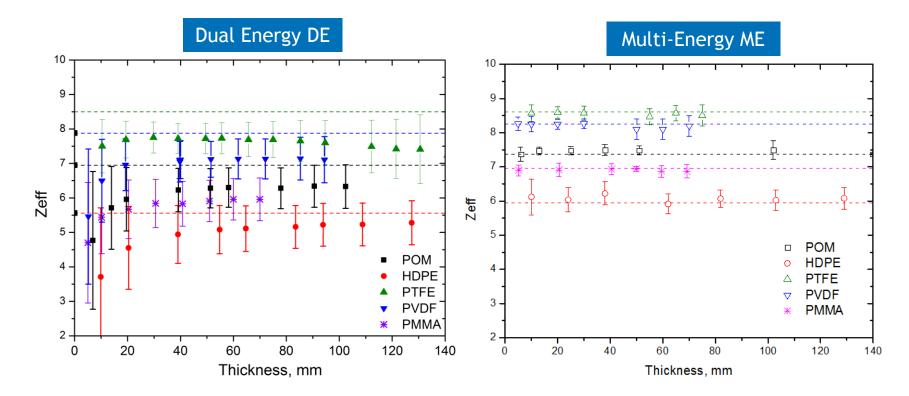
- The goal is to support platform performance improvements and lifecycle extension
 - Ensure that conventional x-ray system platforms can continue to improve in performance.
- Fill the performance gap between current dual energy (DE), multi-view and CT technology:
 - Low FAR on dual view systems, low cost (<\$150K), compact size and easy operation

Multi-Energy

- Improved threat identification (especially HMEs)
- Improved spatial resolution
- Retrofit capable
- Low cost alternative

• Form Fit and Function

- The ME100 DAS is designed to replace the conventional DAS
- Same size DAS enclosure
 - Retrofit
 - New design
- DAS boards shown in detector box in a conventional dual view linescan x-ray system
 - Improved rigidity and adjustment makes installation simple and improves reliability and stability
- Other parts include interface board and power supply



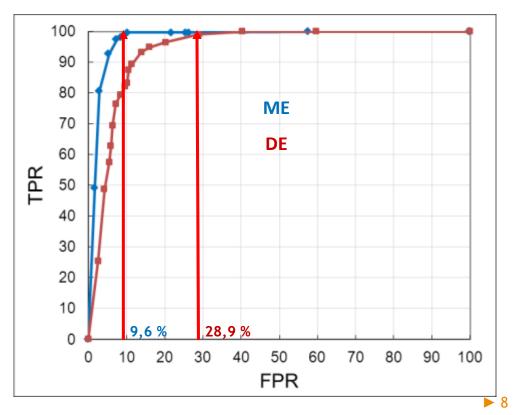
ME100 retrofitted to a AT2 System

Zeff for some explosive simulants as a function of thickness :

- Dot Lines on the graphs represent tabulated values
- ME brings higher accuracy (bias) and precision (σ) : factor 4 to 5(both cumulated)

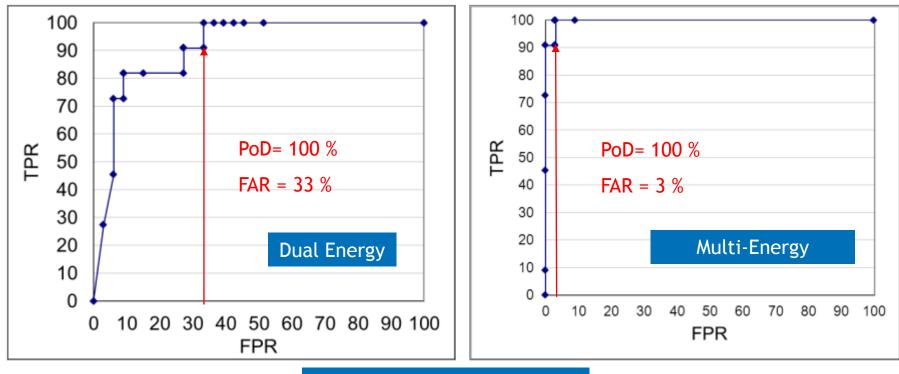
6

- The main reason to deploy the ME100 is for improved threat identification.
 - This is achieved through better material discrimination
 - Which leads to lower false alarm rates
 - Which leads to higher throughput, reduced staffing levels and lower cost
 - Which leads to improved passenger facilitation
- Progress:
 - ME integration within various leading OEM conventional x-ray equipment
- Results
 - Liquid Explosives: Divested LAGs (a good example)
 - Solid Explosives: Complex imaging situations and Personal Electronic Devices (PEDs)
 - Alarm Resolution

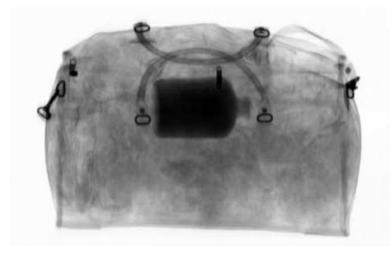

- Objects
 - 24 benign items in plastic containers,
 - 3 threats, ab 100 scans each : NM-real, HP-sim, NG-sim

• Criteria

- Mean Zeff values for each of the 3 threats
- PFR of 99%
 - ME=> FAR 9,6 %
 - DE=> FAR 28,9 %


FAR reduction by factor 3

- NM: Nitromethane (500ml),
- HP: Hydrogen Peroxide 70% simulant (500ml),
- NG: Nitroglycerine simulant (500ml)

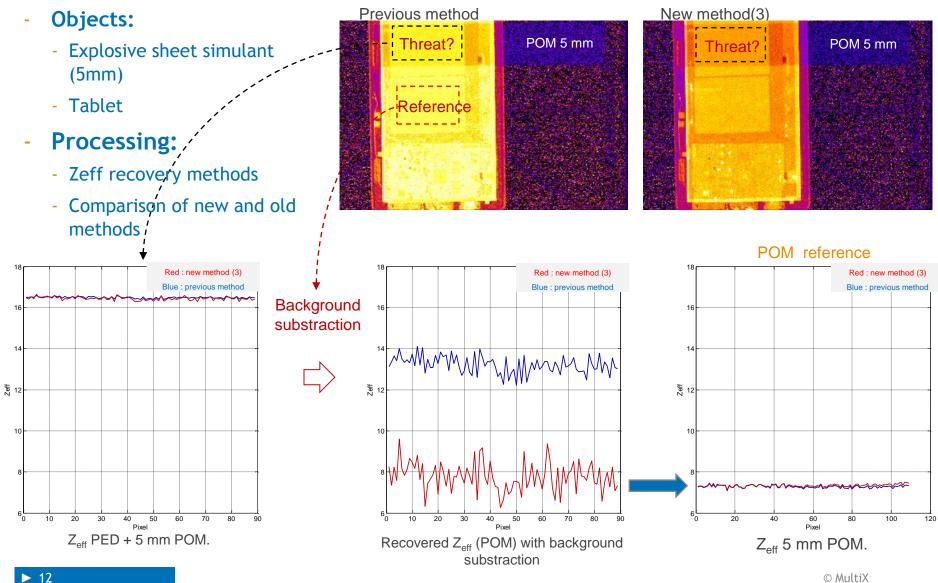

- Objects:
 - 3 Benign items (baby milk, hair gel and mouthwash)
 - 1 "Threat" item (water)
- Criteria: Mean Zeff values for each of the 3 threats

FAR reduction by factor 10

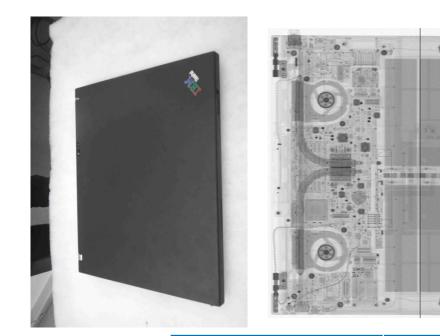
Liquid Explosives: LAGs in Bags with Overlap

		•
with A	\lum	min
	AILUI I I	
******	M MIII	mann

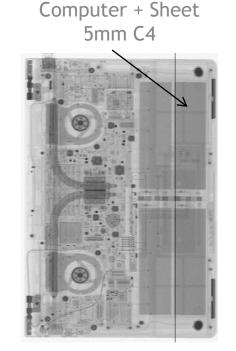
Sample	Zeff after correction	Stdev	With Overlap	Stdev	Zeff after correction	Stdev	With Overlap	Stdev
70% NA	7.51	0.06	7.68	0.04	7.56	0.12	8.20	0.03
50% HP	7.41	0.09	7.72	0.03	7.45	0.02	8.07	0.04
water	7.35	0.11	7.76	0.20	7.37	0.03	8.15	0.09
NM	7.24	0.16	7.62	0.03	7.19	0.05	8.08	0.03
50% Ethanol	6.78	0.05	7.25	0.06	6.98	0.03	7.91	0.04

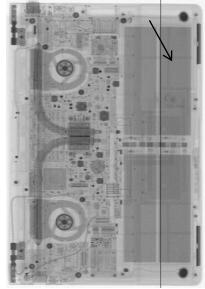

- Chocolate clutter case TNT overlap recovery from various objects found in bags: Chocolate chocolate (35 mm), paper (50 mm), magazines (13 TNT mm) and bed linen (22 mm) simulant 12 -Zeff for mask Zeff for concealed TNT 11 -Zeff for TNT after SRP TNT without mask 10 Zeff 9 ☆ 8 7 7.48 linen chocolate paper magazines mask for TNT
- Processing allows recovery of the TNT Zeff (within 0.1)

▶ 3 June, 2015



Solid Explosives 2: Sheet Explosive + Tablet

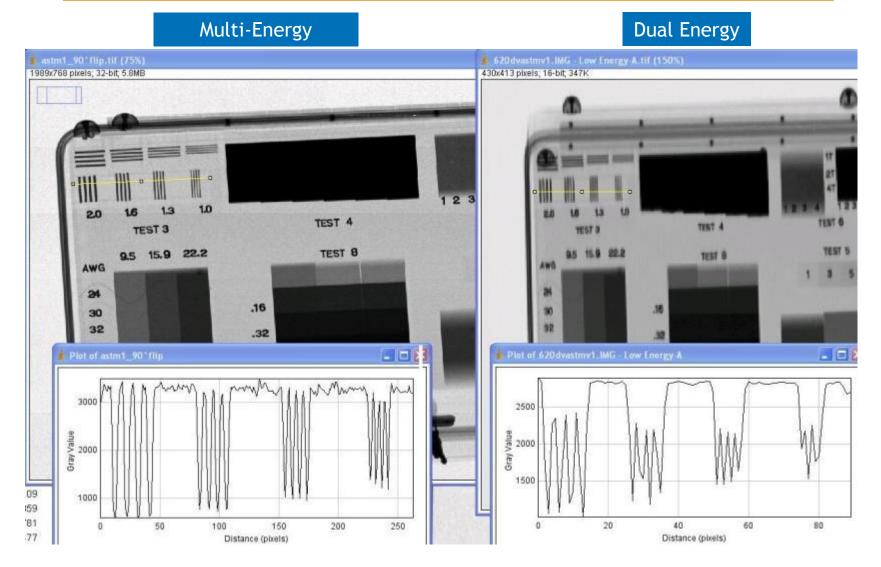

- Objects:
 - Explosive sheet simulant (5mm)
 - Laptop


Computer

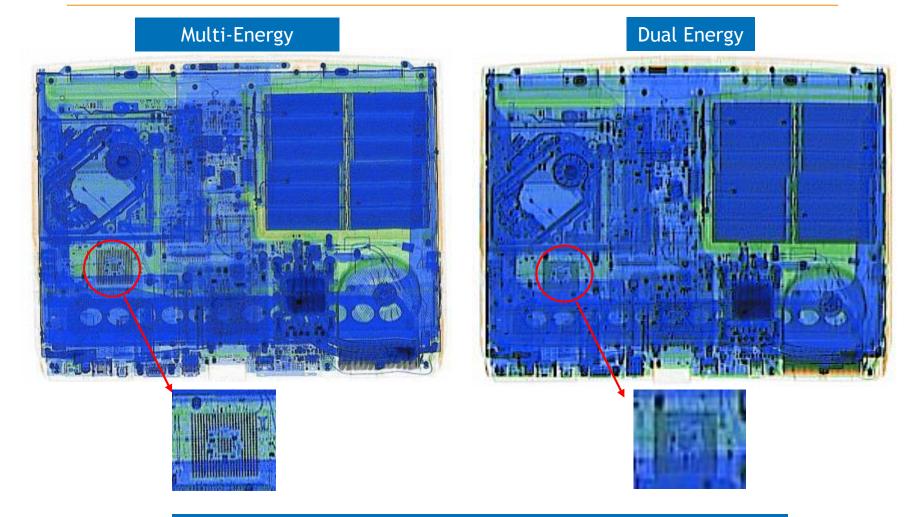
- Processing:

- Zeff recovery methods
- Comparison of new and old methods

Computer + Sheet 11mm C4


Actual Zeff (C4)	Recovered Zeff (C4 11mm sheet)behind laptop	Recovered Zeff (C4, 5mm sheet) behind tablet
7.23	7.38	7.52

- > Checkpoint alarm resolution is an important step.
- > Due to there being a non-zero false alarm rate there is always a need to do alarm resolution
- > Current checkpoints cannot handle current AT2 false alarm rates with secondary search
- > It is inevitable that On Screen Resolution will be employed to match the secondary search rate capability
- > On Screen Resolution Requirements:
 - High spatial resolution
 - Good contrast
 - Good penetration
 - Efficient image processing tools


Alarm Resolution 1: ASTM Image Quality

▶ 3 J<u>une, 201</u>5

Alarm Resolution 2: Complex Images

Improved Spatial Resolution with ME Detectors

ME detection:

The next step in empowering the conventional x-ray platform to meet emerging security regulations and airports requirements:

- Automatic, real-time identification of all illicit materials including explosives,
- Significant decrease of FAR versus dual energy technologies,
- Increased throughput,
- <u>Retrofitable</u>,

Contacts

Jacques Doremus Phone : +33(0)6.77.00.43.32 jacques.doremus@multixdetection.com

www.multixdetection.com

Head Office:

171bis avenue Charles de Gaulle 92200 Neuilly sur Seine - France

R&D - Production Z.A. Centr'Alp 460 rue du Pommarin 38430 Moirans - France