

Metal Artifact Correction Methods for Liquid CT Scan

Xin Jin, Hui Xue, Li Zhang, and Zhiqiang Chen Nuctech Co., Ltd May 13, 2015

Brief Introduction

Application background

- An emerging considerations of lifting the restrictions on carry-on liquids
- CT technology detects explosive materials with high reliability and accuracy

Problems with metallic containers

- High density metals -> Beam hardening effect
- Thin containers -> The partial volume effect (PVE)

Result: Unnegligible error for liquid detection tasks;

A increase of false alarm rate.

Algorithms and solutions

- Projection splitting reconstruction method
- Container edge estimation algorithm
- An attempt to over come both effects with single energy CT

Conclusions

- Prior knowledge of the container helps to solve the problem
- Accurate and easy-implementing methods to discriminate objects inside metallic containers are achievable

Nuctech's CT LEDS

Background

Easing restrictions on carry-on liquids

European Commission's aviation security policy:

- "a temporary restriction to be lifted when suitable technology to screen liquids for explosives became readily available"
- Goal: "a complete lifting ... as of January 2016."

Benefits it brings

- Passenger
 - » Convenient
 - » Shorter boarding time
- Airport
 - » Less checked luggages
 - » More sales revenue

Background

Liquid explosive detection with X-CT scan

- X-Ray: Non-invasive inspection
- CT technique: Avoid object overlapping
- Dual-energy: Better material discrimination

Overlapped 2D image

CT image with no overlapping

Background

Dual energy CT for liquid inspection

Liquid CT scanner

Nuctech's liquid CT inspection systems

XT2080

XT2080SI

LS1516BA

XT2080AD

The Problem

Metal container and image quality downgrading

X-Ray spectrum shifts as it passes through

objects (the beam hardening effect)

FBP reconstruction examples

Large spectrum change occurs while penetrating dense metals

water w/ steel bottle

water w/ PET bottle

CT slice (Z_{eff}) Avg. bias: 15%

CT slice (Z_{eff}) Avg. bias: 0.8%

The Problem

The partial volume effect (PVE)

- Width of detector unit is usually larger than the thickness of container
- Output signal is an average of each ray path
- Beer's law is no longer well followed on edge data points

simulation of PVE

Method

Projection splitting

Separate container and liquid

$$A_{1} = A_{1L} + A_{1M}$$

$$A_{1L} = A_{1} - A_{1M}$$

Method

- Projection splitting on real data
 - Two dual-energy scans
 - » Above and below the liquid level
 - Requires a vertically uniform container wall

Results

Projection splitting on real data

Average of means of Z_{eff} and relative errors

Materials	Reference	Average of means		Relative error	
		Before	After	Before	After
Water	7.49	8.89	7.64	18.7%	2.0%
Alcohol	6.53	8.58	6.88	31.4%	5.4%
26% NaCl	10.90	11.61	10.72	6.5%	1.7%

Discussion

Advantages

Easy implementation / fast computation

Disadvantages

- A uniform container wall may be required
- Large dual-energy decomposition error

Discussion

- The accuracy of dual-energy decomposition
 - Error increases as p1,p2 goes close to two end points

Method

A hybrid projection reconstruction method

- To get better separation between walls and target object
- a more realistic physical simulation
 - » source spectrum / detector response
- extra prior information utilized
 - » thickness uniformity & material information of the container

Consider the problem under a more realistic physical model?

Realistic Physical Modeling

- Issue 1: The partial volume effect
 - Thickness of the container less than detector unit size
 - » can be well simulated in projection computation
 - get a close estimation of the thickness?
 - » parameterized description of the boundary

Assumptions:

- unified thickness of wall
- circular ring shape

Parameters:

- Center position of ring: C
- Radius: R
- Half thickness: d0, d1

Determine the parameters

- Hybrid projection calculation
 - » Mixed with pixels and parameterized shape
 - » Mixed polychromatic and monochromatic projection
- A optimization problem
 - » Minimize the total variation of pixel area ($\overline{\Omega}$)

Hybrid poly-/mono- chromatic projection

$$I_{\Omega+\overline{\Omega}} = \int I_0 \omega(E) \eta(E) e^{-\int (\mu_{\Omega}(\vec{r},E) + \mu_{\overline{\Omega},\epsilon}(\vec{r})) d\vec{r}} dE$$

Minimization problem

$$\min_{d_0,d_1,R} ||X_{\overline{\Omega}}||_{TV}, s. t. P_{\text{forward}}(X) = P_0$$

Compute data without container

$$P_{\overline{\Omega}} = -\log(I_{\Omega + \overline{\Omega}}/I_{\Omega})$$

Realistic Physical Modeling

Issue 2: Beam hardening

- Large spectrum shifts while penetrating metals
 - » Each projection ray has its own spectral changes
 - » Necessary correction required
 - » Simple approach: scale each projection to unify spectrum

Preliminary Result

Edge estimation

- » Center: (0, 0)
- » Liquid radius: 3.0mm
- » Container thick: 0.4mm
- » Estimated thick: 0.409 mm
- » ISO estimation error: <0.1%</p>
- » Thick estimation error: 2.9%

Total iterations: 200

CT image

» Liquid material: gasoline

Discussion

Advantages

- Requires only single-energy CT scan
- Capable to remove both PVE and Beam hardening effect

Disadvantages

- Requires material information of the container
- A uniform thickness of the wall

Future work

- Other shapes of the container wall
- Reconstruct under multiple containers/objects
- Container material estimation
- Benefits from dual-energy scan?

Conclusion

- The PVE and beam hardening effects are two major factors that influence the accuracy of liquid CT scans on metallic containers
- Additional prior information can be found to assist the CT reconstruction as well as accurate physics models
- Two methods were proposed to overcome the effects
- Better liquid CT reconstruction can be achieved

THANK YOU!

This work was partially supported by the grant from National Natural Science Foundation of China (11435007), Beijing Excellent Talents Training Foundation (2013D009004000004), and China Postdoctoral Science Foundation (2014M560092).