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 Needs:

 New low-cost mm-wave 

imaging for “Standoff” (10-

50 m range) and

“On-The-Move” (1-3 m 

walk through) concealed 

body-worn threat detection

“Stand-off” and “On-the-Move” Detection of 

Security Threats 

 So what?

 Imaging for high throughput,     

non-invasive, minimal disruption 

scanning

 Full body coverage for imaging 

without interrupting forward 

steady pedestrian movement

 Affordable,  with minimum 

number of non-uniform sparse 

array of Tx/Rx radar modules

 Dielectric characterization

 Who cares? 
 Industrial transition partners: HXI, Inc ; 

Rapiscan, L3 Communication; Smiths 

Detection

 Target government customers: TSA, 

DOJ, CBP, Dept. of State

Standoff

On-the-move
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 Innovative Elements
 Array of Tx/Rx 

 Rx. – static array

 Tx. – mechanically scanned

Hardware Overview
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 Fully coherent multistatic radar

 Separated Tx & Rx

LO

 Mm-wave switches

4-Port 

Switch

Switch 

Waveguide

Receiver 

Module
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 3D Imaging fully electronic:

2015/2016 Hardware Development

4-TX4-TX

4-TX4-TX

4-RX 4-RX

4-RX 4-RX

(5*4) * (5*4) = 400 Channels

4-TX 4-RX
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Experimental result #1: 3D Imaging explosive 

threats (metallic & dielectric) (FFT-multi-static)

Depth [m]

 Metallic pipe

 Dielectric (TNT)
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Algorithm #1: Standoff detection using PAS and 

MRS and 3D Compressive Sensing (CS) 

• First approach to 3D reconstruction 

using PRS

na

z0

L1

na

ns

z2

l
L2

• 2D reconstruction using PAS

• Next step is used Fourier-based imaging combined with Nesterov

inversion (CS) to improve the speed of the inversion.

z0 = 2000λ = 10 m; 

x0 = 250 λ =  1.25 m;

L1 = 80 λ= .4 m;

L2 = 250 λ = 1.25 m;

na = 500;

l = 1.5 λ = 7.5 mm;

nd = 1000;

Ground truth
Traditional SAR

reconstruction

Ground truth Compressive Sensing 

reconstruction

Compressive Sensing 

reconstruction
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Why is important LO? On-the-move concept 

Transmitters and receivers in 

one-side-wall configuration

Poor reconstruction

Transmitters and receivers in 

two-side-wall and front-rear configuration

Good reconstruction

Rx1

Rx2

Rx3

Tx
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3D forward modeling of a novel “On-the-move” 

configuration using MECA

 Forward method (MECA) for the simulation of realistic human 

bodies: Metallic; Dielectrics – Lossy & Dispersive (including 

Meta-materials)

Equivalent currents based method for fast simulation of scattered fields for Rx/Tx

Active 

transmitter

Normalized amplitude, in dB

Active transmitter
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3D imaging of a novel “On-the-move” 

configuration using CS + FFT (forward+inverse)

 3D Fourier-based reconstruction for different positions  

Recovered reflectivity.

-15 dB isosurface

Yolanda Rodriguez Vaqueiro, Yuri lvarez, Borja Gonzalez-Valdes, Fernando Las-Heras and J. A. Martinez-Lorenzo. 

Fast Multistatic Fourier-based Forward and Inverse Operators for Compressive Sensing Imaging. accepted for 

publication AP-S 2015 — IEEE AP-S International Symposium, Vancouver, Canada, Jul. 2015. 9

15 to 30 GHz BW

50 transmitters 

201 x 401 receiving

SAR 1400 s

FFT  10 s 



 Configuration

CCA/CCMA testbed
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Compressive 

Reflector 

Antenna

CCA: Compressive Reflector 

Antenna
Planar 

phase front

Pseudo-random 

phase front
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Each scatterer

is defined by 

Electromagnetic 

parameters and 

3D size
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Example #1- “Fully-Electronic”: 

Geometry
a) Reflector antenna with pseudo-random codification 

mask

Distortions

are

relative to

a perfect

parabolic

profile

5 Transmitting and 5 

Receiving horns 13



Example #1-Preliminary imaging results

Traditional
SAR imaging

Compressive
Sensing imaging

Targets
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 Hardware: Coherent, multiple transceivers and switches

 Algorithms: Compressive Sensing techniques (consensus)

 CCA/CCMA is obtained adding pseudo-random appliqué 

scatterers on the surface of the TRA: dielectrics, metallic, 

meta-materials.

 CCA/CCMA enhances the channel capacity 

 Potential configurations of Compressive Reflector Antenna:

 Mechanical scanning (3D imaging): 

 Conf. #1: single frequency; single transceiver ($).

 Electrical scanning (3D imaging): 

 Conf. #2: single freq.; multiple transceiver ($$).

 Conf. #3: multiple freq.; multiple transceivers ($$$)

 Conf. #4: multiple freq.; multiple transceivers; dielectric/meta-materials ($$$$) 

Conclusions
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