#### Exceptional service in the national interest







Object Composition Identification via Mediated-Reality
Supplemented Radiographs

Dr. Edward Jimenez

Principal Scientist – Software Systems R&D





## Elevator Speech



- Summary:
  - This work presents an exploratory method to post-process radiographs to allow for maximum information extraction. Specifically, can one identify material contain within the field-of-view.
- What benefit could TSA obtain from this technology?
  - Increased detection capacity
  - Reduced false-positive rates
  - Precise material classification
- So what?
  - This technology potentially leads to increased separation between materials with similar properties.
- Who cares?
  - Medical, security, manufacturing, industrial NDT/NDE.

### Detection



- Object is scanned
  - X-ray Image(s) produced
  - Displayed on a monitor (LCD-type)
- Image is processed by designated algorithm
  - Pixel Thresholding
    - Usually utilize Dual-Energy Radiography
  - Color coding

# Exploratory work



- Avoid the approximation  $\bar{I} = \bar{I_0}e^{-\bar{\mu}x}$ , and try to estimate  $\mu(\varepsilon, x)$  directly.
- Very challenging, is it possible?
- Radiation detection hardware has evolved significantly in recent years.
- Decreasing cost has allowed for new types of data acquisition.

#### Past Work



- 1<sup>st</sup>: acquire images at multiple energies, solve effective attenuation (does not work!)
- Next: Approach: Use basis function to create candidate materials, simulate the image and compare it to the acquired image.
  - Limited success



## Multi-Energy Attempt



 Acquire images with an energy discriminating detector and apply mediated-reality simulation-based optimization



### Results

Water:



### Results:



Tin:



### Results cont.



Lead:

#### **Pb Attenuation Estimate** Solution • True 10<sup>4</sup> In(Attenuation) (In (cm<sup>-1</sup>)) 10<sup>1</sup> 100 150 200 250 50 300 350 400 450 **Energy (KeV)**

#### Conclusion



- Even for narrow energy ranges, direct evaluation of attenuation values introduce non-trivial error.
- Leveraging simulation-based optimizations could lead to increased numerical stability.
- Future work: Laboratory-based validation experiments underway.
- Thanks! Questions?

# Dual Radiography



- X-rays follow Beer's law, for images:
  - $I = \iint_{\varepsilon \in E, x \in X} I_0(\varepsilon) e^{-\mu(\varepsilon, x)x} d\varepsilon dx$
- But, is approximated as:

$$\bar{I} = \bar{I_0}e^{-\bar{\mu}x}$$

- Using this approximation, 2-4 radiographs measured
  - Low energy (object present, absent)
  - High energy (object present, absent)

### Continued



A ratio image of high-to-low energies is created

$$R = \frac{\frac{I_H}{I_{0,H}}}{\frac{I_L}{I_{0,L}}} \approx \frac{\overline{\mu_H}}{\overline{\mu_L}}$$

- This ratio approximates "effective atomic number"
- This ratio can then be subject to a threshold to separate material types
- Drawback: due to noise and other factors, only general classifications can be made.

## SNL Applications



- Current Radiography technology leveraged at SNL
  - 3D Computed Tomography
  - Digital Radiography
  - Computed Radiography
  - Flash Radiography
- Applications
  - Defect detection
  - Anomaly detection
  - Materials characterizations
  - Feature extraction
- Sandia National Laboratories has many sources, up to 6 MeV.

### First Attempt



- How far off would we be using approximations?
- Approach: acquire images at multiple energies, solve effective attenuation





### Results



Polyethylene and Water



...not too bad!

#### Results Cont.



Tin and Lead



• ....This is problematic

#### Relative error WRT Energy – Direct Evaluation





#### Relative error WRT Thickness – Direct Evaluation





## Second Attempt



- Mediated Reality and Simulation-based Optimization
- Approach: Use basis function to create candidate materials, simulate the image and compare it to the acquired image.
- Goal: Try different basis functions, try to resolve discontinuities in the attenuation profile.
- Optimize:

$$\underset{\hat{\mu}(x,\varepsilon)}{\operatorname{argmin}} \| \log(\overrightarrow{g}_{\mu(x,\varepsilon)}) - \log(\hat{g}_{\hat{\mu}(x,\varepsilon)}) \|_2$$

### Results:



Using a very large search space (~450 dimensions)

Copper:



...Problematic

#### Results cont.



Smaller space, interval-based basis functions

Tin:



No k-edge resolved...but promising!