Reducing the Time for Deploying new ATRs

Matthew Merzbacher / October 29, 2015 /

GOAL

Benefit to TSA: Faster deployment of advances in detection

- Respond <u>quickly</u> to evolving threats
- Improve P_D/P_{FA}
- Improve on-screen resolution
- Provide better downstream data for alarm resolution

→ What are the barriers and what can be done?

Problem: Current Fielding of ATR is extremely slow

Performance validation is <u>not</u> the big problem!

EDS CASE STUDY

→ RAD / UltraFAR

Reduce FAR by half while keeping as much detection as possible... Quickly!

Approach: Tuning Iterations and feedback using Emulators [Agilish]

What worked

Five iterations in 3 months (three iterations assessed at TSL)

What didn't work

- Moving target (first iteration lost "too much")
- Deeper changes left off table in rush to iterate

→ What maybe worked

- No final requirement meant...
 - Capability determines requirement
 - Easier to declare victory
- Policy changes stalled field test

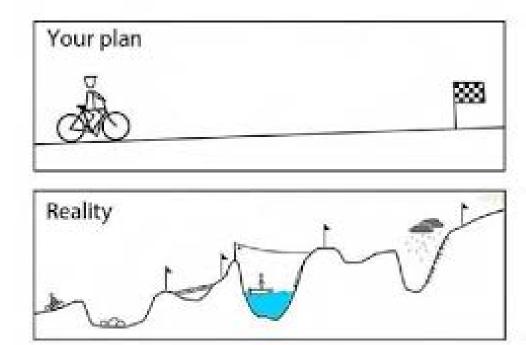
WHY IS IT SO SLOW?

Jong delays from Problem ID to Go

→ ATR Development is not slow

Varies depending on task

Internal testing / integration takes a little longer


- Statistical Validation
- Putting the algorithm on the scanner (architectural challenge)

Testing Time takes still longer

- Performance Testing (emulators!)
- Impact Testing is hard/slow

→ Fielding takes <u>much</u> longer

- No "Big Switch" (a good thing)
- Policy involved

Another Example: RTM

- Specification: <long>
- Internal Development: < 1 year</p>
- Regulatory Testing (multiple regulators): 6 months
- Field: 7-12 years (and counting)

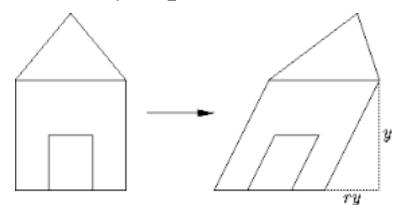
PROPOSAL: PUT THE CART BEFORE THE HORSE

Instead of developing algorithms and then fielding them, let's...

Field algorithms and then develop them!

Allows us to start working on the policy and architecture issues now!

- Can we adapt algorithms in the field when necessary?
 - How would this work?


BULK DETECTION APPROACH

→ Target Definition:

- Density Range $(\rho_1 \rho_2)$ and Atomic Number Range $(Z_1 Z_2)$
- Minimum Mass (m)
- Configurations & Concealments
- Desired Detection (P_D, P_{FA})

> Quickly Achievable

- Open a window in CT value and Z_{eff}
- Requires straightforward transfer function from target definition to window
 - CT is probably close to density
 - Z_{eff} is probably *close to* Atomic Number
 - Estimated Mass is probably close to Mass
- FA estimates against internal databases provide a good estimate of impact

TECHNICAL CONCERNS

Presumes transfer function works across entire domain

Can be pre-validated for areas of potential interest

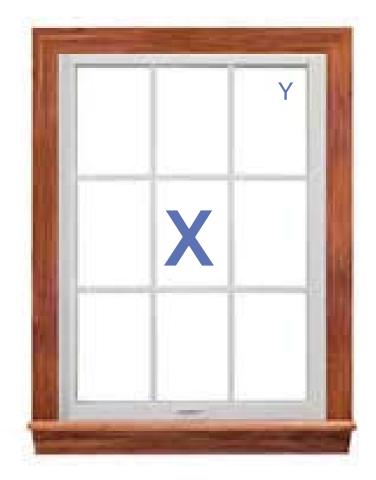
Transfer function is not "affine" beyond CT, Z, and estimated mass

- Special cases will break for configurations and concealments
- Sheets (and some bulks) are hard
 - Thinness and bendiness adds complexity
- ATR may use additional features / morphology: more features mean more trouble
- Even for those CT/Z/m, the transfer function is not perfectly "affine"

How can we know quickly when detection doesn't track well? And what's "good enough"?

OTHER CHALLENGES

Requirements: Defining / Controlling the windows is critical


- Is everything equal inside the window?
- How does that affect transfer?

Operational impact hard to assess in advance

OSR and other downstream resolution

ATR development issues are easier to solve than:

- Update strategy (Networking)
- Control & Command avoiding exuberant local personnel?
- Policy concerns

7

FINAL IDEA [IF TIME PERMITS]

Windows are not currently associated with specific materials

Could identify one (or more) windows for each material

- Windows overlap
- Detection becomes a logical "or"
- Allows independent development on a material-by-material basis
- Challenges in presentation of results

Allow material-level fusion with other technologies

If they grok the same materials

Maybe DICOS can help!

8

SUMMARY

Need faster deployment of advances in detection

- Respond <u>quickly</u> to evolving threats
- Improve P_D/P_{FA}
- Provide better downstream data for alarm resolution (human & nonhuman)

→Testing/Validation is <u>not</u> the time-consuming part!

Technical issues are easier than requirements, control & policy issues

9