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Does Content Matter?

Recommending Movies
• Yehuda Koren (Netflix Competition)

Music Similarity
• Malcolm Slaney (ISMIR 2007)

Tagging Images
• Dhruv Mahajan (ACM Multimedia 2010)

Early vs. Late Fusion
• Conclusions

FFT

!
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Netflix Competition

Create new recommendation algorithm
• 10% better than Netflix algorithm

Data
• 100M ratings

• 480k users, 17k movies

Winner
• Gradient Boosted Decision Trees

• Hundreds of features

NO content 

features!!!!
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Baseline Predictors

Minimize
• Error +

• Coefficient sizes

Average for item i

Average for user u

Average for all items

True rating for item i by user u Regularization Parameter
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Netflix Temporal Effects

Ratings change with
• Age (older are rated higher)

• Time (big average change in early 2004) 

No 
content 

features!



7ISMIR in Victoria, BC

Music Similarity

Are 

these 

two 

songs 

similar?

Took me 

1.5 hours



8

Most Similar?

Song 1
Ode to Joy on a bagpipe

Song 2    
Ode to Joy Orchestral

Song 3
Mozart Orchestral



9Night and day vs. Elevator Music

Context

Song

Rater
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Song 1 Song 2 Song 3

Jazz Lover 5 0 5

Rock Lover 5 0 5

Classical Lover 0 5 0

Song Similarity Example

Similar Songs

Like an anchor model (from speaker ID) or beacon model (from CS)
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Our Experiment

380,911 Subjects

1000 Jazz Songs

1,449,335 Ratings

Love It!Never Play this Again
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Similarity User Tests

Which playlist is most similar?

Approach Most Similar 

Votes

Least Similar 

Votes

Random 1 13

Content Based 1 4

Rating Based 16 1



13

Tagging Images

Labeling is hard!
• ESP Game: Perhaps >10 guesses

Small differences matter!

www.catrescue.com www.doglovers.com
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Web-Graph

Context matters

Web neighbors matter

Images drive pages

Semi-supervised learning
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Graph Method

Optimize loss (and regularize)
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Experiment

Connected subgraph of entire web
• 82k web pages

• 211k attached images

Labeled Data
• 1291 Positive

• 1405 Negative

Image Features
• 500-d deep belief network (DBN)

• Small by today’s standards



17

Tagging Performance

Best 

single 

feature!!!!
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Early vs. Late Fusion
• Conclusions



19

Early vs. Late Fusion

Late Fusion
• Easier (less memory)

Early Fusion
• Better performance

Feature Set A Feature Set B

Combine Decisions

Feature Sets A and B
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Odd because likes 

smelly cheese?

Odd because of

home?

Late Fusion

(combine by

multiplication)

Midwest Farm Boy

40% 10% 4%

Parisian

40% 10% 4%

Late Fusion Example—Is this person an oddball?

Information lost 
with each 
decision!!!
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Thank You

malcolm@ieee.org



22

Does Content Matter?

Recommending Movies
• Yehuda Koren (Netflix Competition)

Music Similarity
• Malcolm Slaney (ISMIR 2007)

Tagging Images
• Dhruv Mahajan (ACM Multimedia 2010)

Early vs. Late Fusion
• Conclusions



23

scoremovieuser
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Training data Test data

Movie rating data

• Training data

– 100 million

ratings

– 480,000 users

– 17,770 movies

– 6 years of data: 

2000-2005

• Test data

– Last few ratings 

of each user (2.8 

million)

• Dates of ratings are 

given
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Bottom Line

Gradient Boosted Decision Trees
• Find weightings and best features

• All features/predictors

– 454+75+24

• Additive regression model

NO content features!!!!
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Does Content Matter?

Yes, but how?

Leverage human signals

1B users are smarter than 1 Multimedia PhD

>
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Linear Classifier

Simplest Classifier
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Today’s Theme

One not so bright Be very smart

Or use lots 

of data and 

simple 

classifiers
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Components of a rating predictor

user-movie interactionmovie biasuser bias

User-movie interaction

• Characterizes the matching 
between users and movies

• Attracts most research in the 
field

• Benefits from algorithmic and 
mathematical innovations

Baseline predictor

• Separates users and movies

• Often overlooked 

• Benefits from insights into users’ 
behavior

• Among the main practical 
contributions of the competition

Courtesy of YehudaKoren
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Factorization Model

Find hidden factors

Can use explicit (stars) 

or implicit data 

(viewed)

From: Yehuda Koren, Robert Bell, Chris Volinsky, "Matrix Factorization Techniques for 

Recommender Systems," Computer, vol. 42, no. 8, pp. 30-37, August, 2009.
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Estimate unknown ratings as

inner-products of factors
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A rank-3 SVD approximation

users

Courtesy of YehudaKoren
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Neighborhood Models

Find similar users (or items)

Weighted average

From: YehudaKoren, Robert Bell, Chris Volinsky, 

"Matrix Factorization Techniques for 

Recommender Systems," Computer, vol. 42, no. 

8, pp. 30-37, August, 2009.
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Neighborhood Math

1. Define a similarity measure between items: sij

2. Select neighbors – N(i;u): 

K items most similar to i, that were rated by u

3. Estimate unknown rating, rui, as the weighted average:

• Results are improved when normalizing data
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Courtesy of 
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Neighborhood modeling through global optimization 
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Need to estimate 
rating of user u for 
item i

Baseline 
estimate

Deviation from 
baseline estimate 
for item j

Offset from j to i

Constants learned from the 
data through 
optimization

A basic model:

Set of items 
rated by u

Courtesy of Yehuda Koren
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Users do not rate everything….

Self-Selected Rating Histogram True Rating Histogram

From: Marlin, Zemel, Roweis, Slaney. “Collaborative Filtering and the missing at random assumption.” UAI 2007

(1.5B ratings) (350k ratings)
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About the Data       

Real rating data
• Y! Music

• 700M ratings

Random ratings
• 35k subjects

• 350k ratings
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Semi-Supervised Learning
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Content

Metadata Spectrum

Human 
Judgments Stars

Rating DataTags

Compare 
words

Content
Based

Compare 
words

Artist

Metadata
Based
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A Small Experiment

• 380,911 Subjects

• 1000 Jazz Songs

• 1,449,335 Ratings

Love It!Never Play this Again


