

Does Content Matter?

November 15, 2016

Malcolm Slaney

Not a Google project!

Does Content Matter?

Recommending Movies

• Yehuda Koren (Netflix Competition)

Music Similarity

Malcolm Slaney (ISMIR 2007)

Tagging Images

• Dhruv Mahajan (ACM Multimedia 2010)

Early vs. Late Fusion

Conclusions

Netflix Competition

Create new recommendation algorithm

• 10% better than Netflix algorithm

Data

- 100M ratings
- 480k users, 17k movies

Winner

- Gradient Boosted Decision Trees
- Hundreds of features

NO content features!!!!

Movie rating data

Tra	aining data		Test data				
User	Movie	Score	User	Movie	Score		
1	21	1	1	62	?		
1	213	5	1	96	?		
2	345	4	2	7	?		
2	123	4	2	3	?		
2	768	3	3	47	?		
3	76	5	3	15	?		
4	45	4	4	41	?		
5	568	1	4	28	?		
5	342	2	5	93	?		
5	234	2	5	74	?		
6	76	5	6	69	?		
6	56	4	6	83	?		

Baseline Predictors

Minimize

• Error +	
 Coefficient sizes 	Average for all items
	Average for user u
	Average for item i
$\min_{b_*} \sum_{(u,i) \in \mathscr{K}} (r_{ui} -$	$(\mu - b_u - b_i)^2 + \lambda_3 (\sum b_u^2 + \sum b_i^2)$
\mathcal{U}_* $(u,i)\in\mathcal{K}$	u i

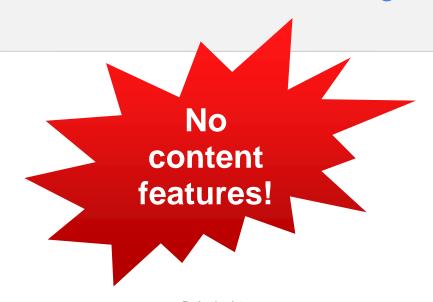
True rating for item i by user u

Regularization Parameter

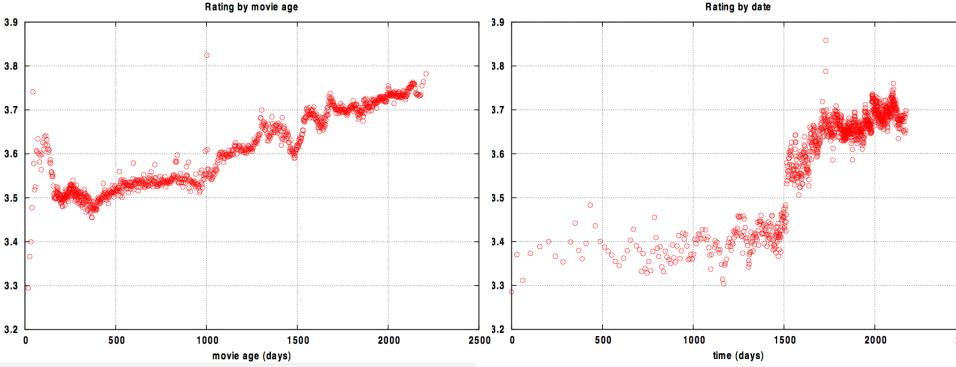
Netflix Temporal Effects

Ratings change with

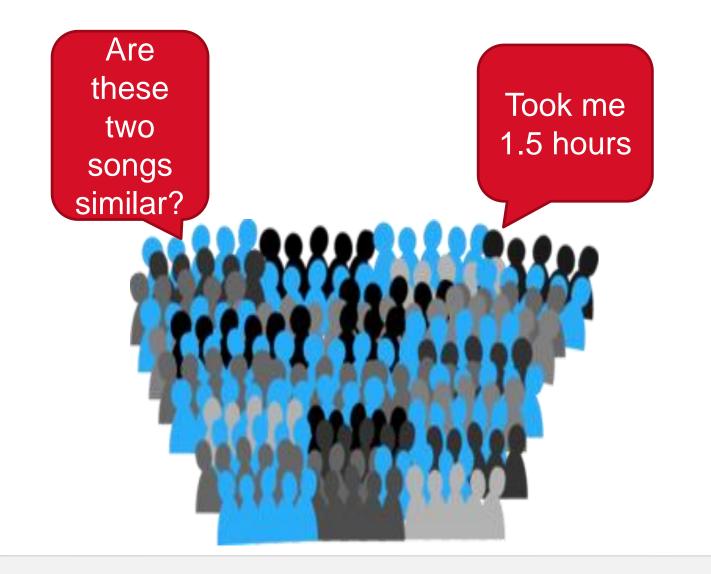
- Age (older are rated higher)
- Time (big average change in early 2004)

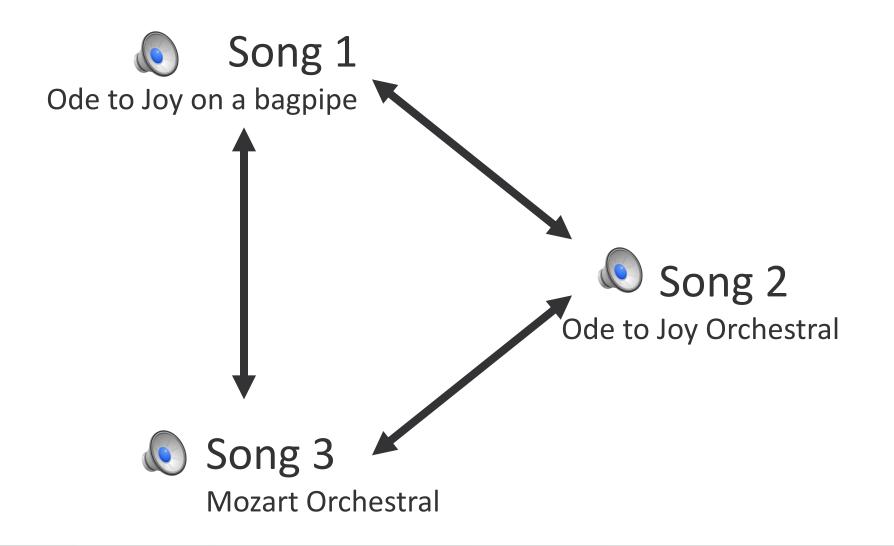


Google

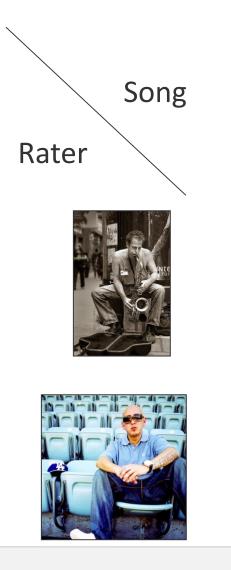


Music Similarity





Context

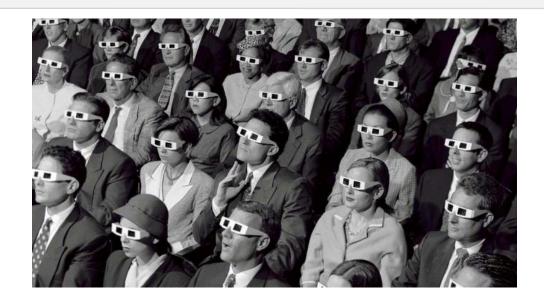


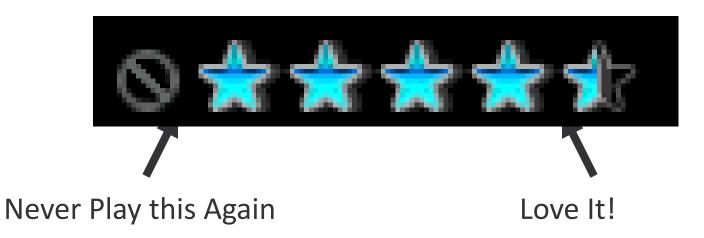
	Song 1	Song 2	Song 3
Jazz Lover	5	0	5
Rock Lover	5	0	5
Classical Lover	0	5	0
	Sir	nilar Songs	1

Like an anchor model (from speaker ID) or beacon model (from CS)

Our Experiment

380,911 Subjects1000 Jazz Songs1,449,335 Ratings





Which playlist is most similar?

Approach	Most Similar Votes	Least Similar Votes		
Random	1	13		
Content Based	1	4		
Rating Based	16	1		

Tagging Images

Labeling is hard!

• ESP Game: Perhaps >10 guesses

Small differences matter!

www.catrescue.com

www.doglovers.com

0.9

 Ω_i

Web Page

4

-0.85

-0.45

Web-Graph

0.85 0.6 **Context matters** Web neighbors matter Ω" Ω. Ω,, Web **Images drive pages** Page 0.8 Web 1 Ω" Page 3 Ω" **Semi-supervised learning** Web ? Ω,, -0.3 Page 2 Ω, Ω. Ω,, Ω"

-0.2

$$\Omega(w,z) = \Omega_s(w,z) + \Omega_w(w,z) + \Omega_i(w,z)$$

Enforce continuity across directed web graph edges

Propagate image score to webpage

Experiment

Connected subgraph of entire web

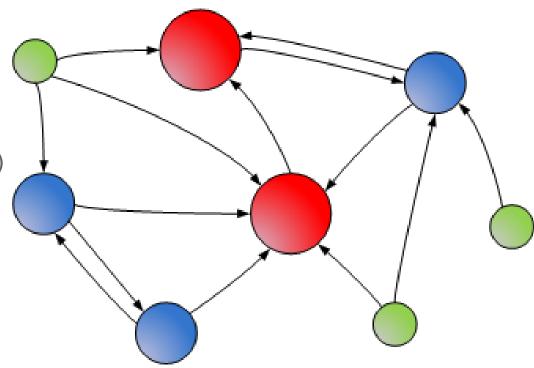
- 82k web pages
- 211k attached images

Labeled Data

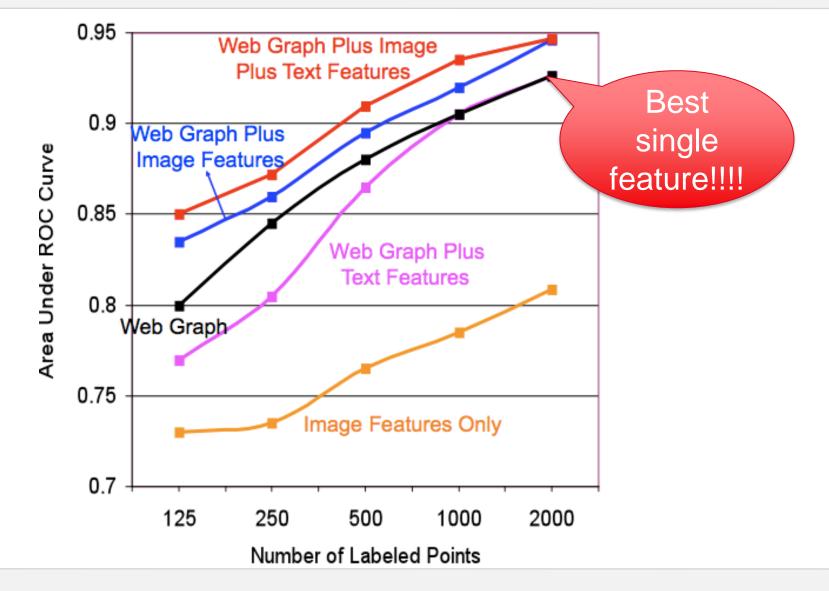
- 1291 Positive
- 1405 Negative

Image Features

- 500-d deep belief network (DBN)
- Small by today's standards



Tagging Performance



Does Content Matter?

Recommending Movies

• Yehuda Koren (Netflix Competition)

Music Similarity

Malcolm Slaney (ISMIR 2007)

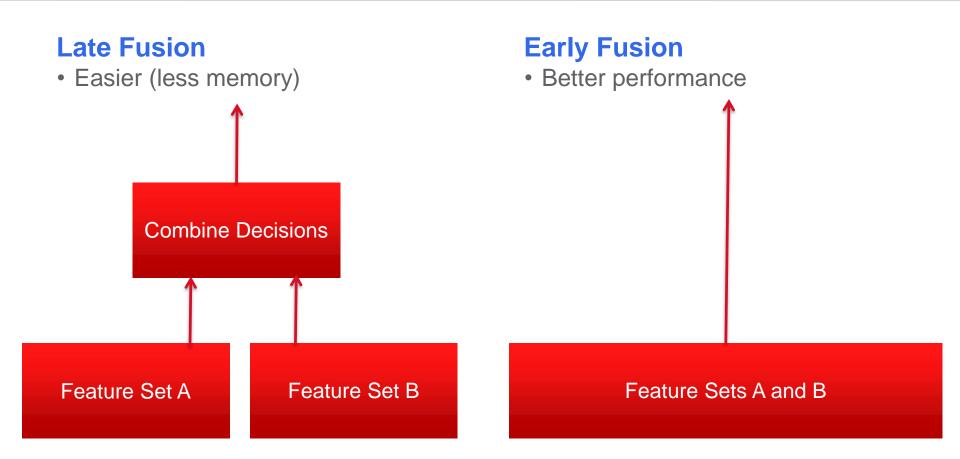
Tagging Images

• Dhruv Mahajan (ACM Multimedia 2010)

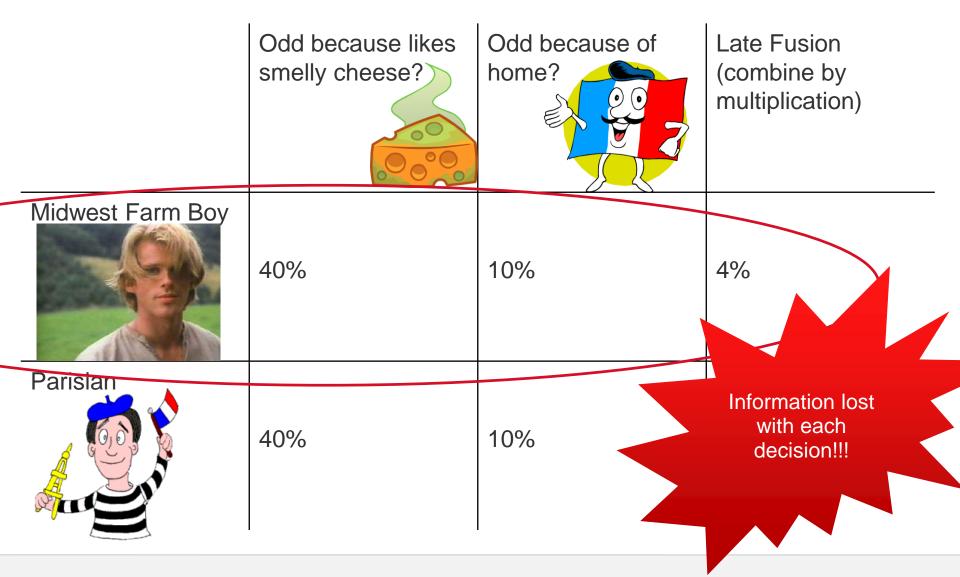
Early vs. Late Fusion

Conclusions

Early vs. Late Fusion



Late Fusion Example—Is this person an oddball?



Google

Thank You

malcolm@ieee.org

Does Content Matter?

Recommending Movies

• Yehuda Koren (Netflix Competition)

Music Similarity

Malcolm Slaney (ISMIR 2007)

Tagging Images

• Dhruv Mahajan (ACM Multimedia 2010)

Early vs. Late Fusion

Conclusions

Movie rating data

	Tra	aining data		Test data			
Training data	user	movie	score		user	movie	
– 100 million	1	21	1		1	62	?
ratings	1	213	5		1	96	?
– 480,000 users	2	345	4		2	7	?
– 17,770 movies	2	123	4		2	3	?
– 6 years of data:	2	768	3		3	47	?
2000-2005	3	76	5		3	15	?
Test data	4	45	4		4	41	?
 Last few ratings 	5	568	1		4	28	?
of each user (2.8	5	342	2		5	93	?
million)	5	234	2		5	74	?
Dates of ratings are	6	76	5		6	69	?
given	6	56	4		6	83	?

Bottom Line

Gradient Boosted Decision Trees

- Find weightings and best features
- All features/predictors
 - 454+75+24
- Additive regression model

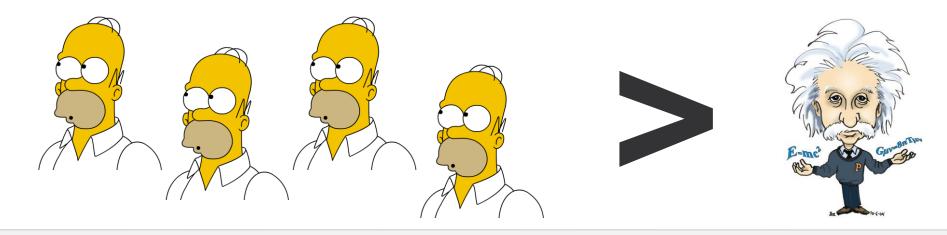
NO content features!!!!

Does Content Matter?

Yes, but how?

Leverage human signals

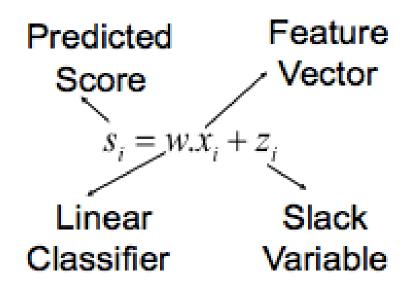
1B users are smarter than 1 Multimedia PhD



Linear Classifier

Simplest Classifier

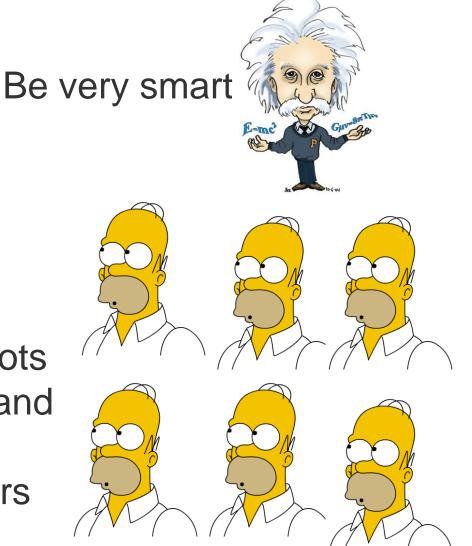
Traditional Linear Classifier



Today's Theme

One not so bright

Or use lots of data and simple classifiers

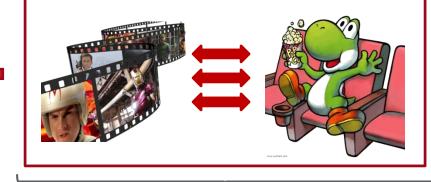


Components of a rating predictor

+

user-movie interaction

Google



Baseline predictor

- Separates users and movies
- Often overlooked
- Benefits from insights into users' behavior
- Among the main practical contributions of the competition

User-movie interaction

- Characterizes the matching between users and movies
- Attracts most research in the field
- Benefits from algorithmic and mathematical innovations

Courtesy of YehudaKoren

Factorization Model

Find hidden factors

Can use explicit (stars) or implicit data (viewed)

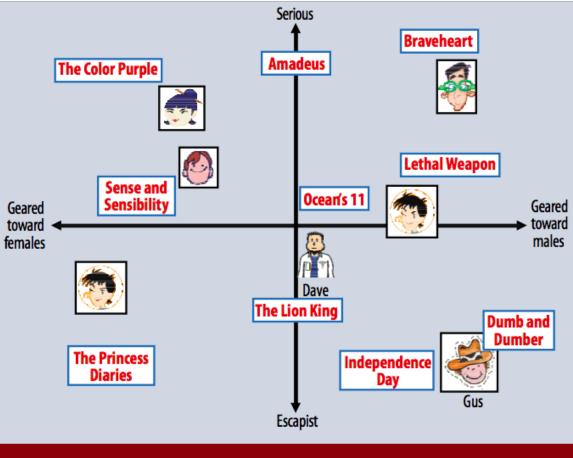
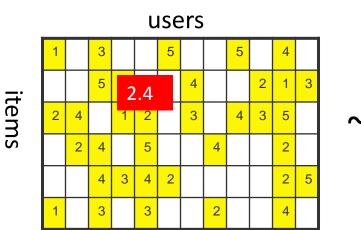


Figure 2. A simplified illustration of the latent factor approach, which characterizes both users and movies using two axes—male versus female and serious versus escapist.

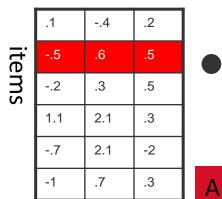
From: Yehuda Koren, Robert Bell, Chris Volinsky, "Matrix Factorization Techniques for Recommender Systems," *Computer*, vol. 42, no. 8, pp. 30-37, August, 2009.

Estimate unknown ratings as inner-products of factors



 $\sim =$

users



1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
8											
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

A rank-3 SVD approximation

Courtesy of YehudaKoren

Google

Neighborhood Models

Find similar users (or items) Weighted average

From: YehudaKoren, Robert Bell, Chris Volinsky, "Matrix Factorization Techniques for Recommender Systems," *Computer*, vol. 42, no. 8, pp. 30-37, August, 2009.

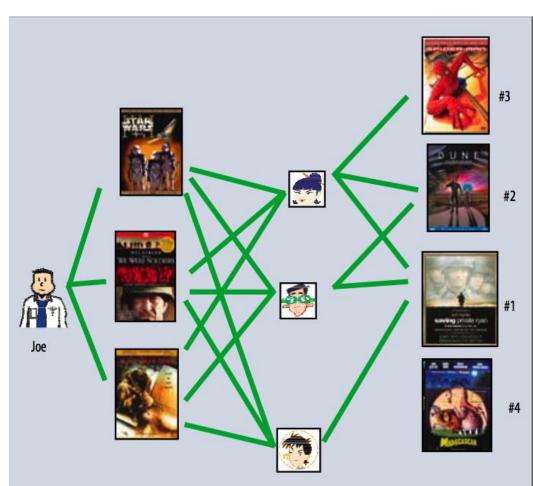


Figure 1. The user-oriented neighborhood method. Joe likes the three movies on the left. To make a prediction for him, the system finds similar users who also liked those movies, and then determines which other movies they liked. In this case, all three liked *Saving Private Ryan*, so that is the first recommendation. Two of them liked *Dune*, so that is next, and so on.

Neighborhood Math

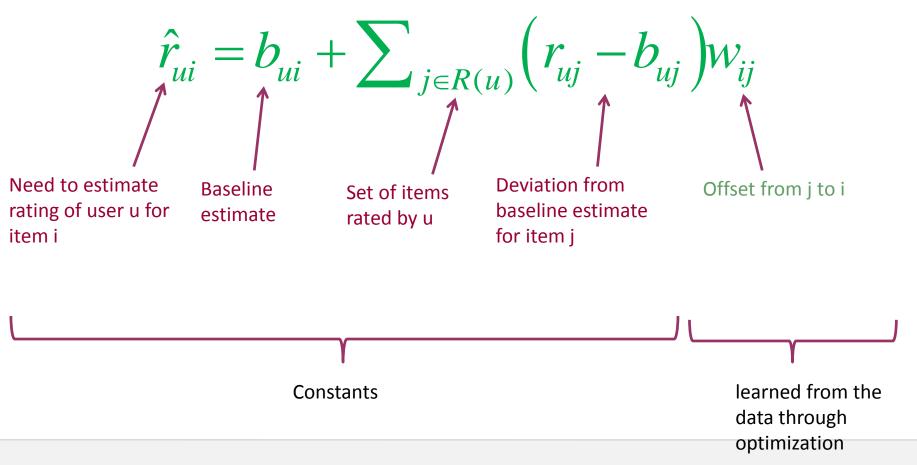
- 1. Define a similarity measure between items: s_{ii}
- Select neighbors N(i;u):
 K items most similar to i, that were rated by u
- 3. Estimate unknown rating, r_{ui} , as the weighted average:

$$\hat{r}_{ui} = \frac{\sum_{j \in N(i;u)} S_{ij} r_{uj}}{\sum_{j \in N(i;u)} S_{ij}}$$

Results are improved when normalizing data

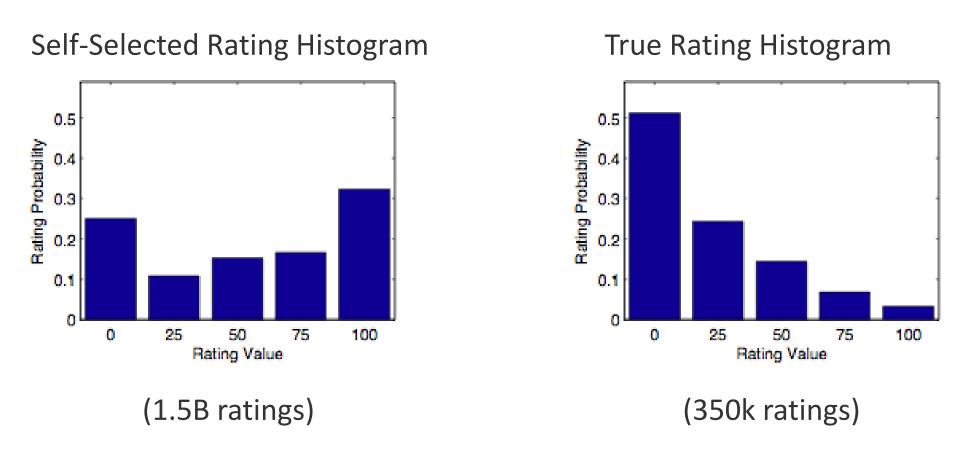
Neighborhood modeling through global optimization

A basic model:



Google

Users do not rate everything....



From: Marlin, Zemel, Roweis, Slaney. "Collaborative Filtering and the missing at random assumption." UAI 2007

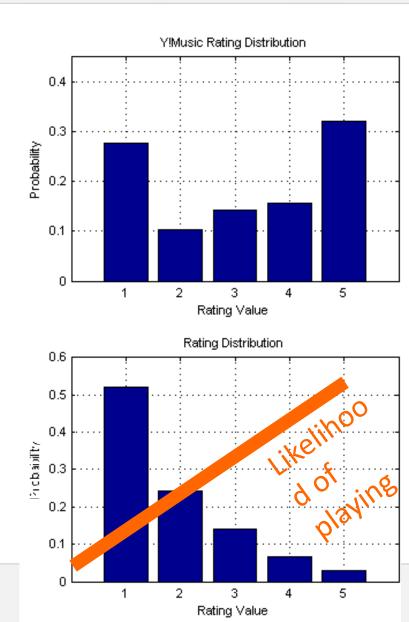
About the Data

Real rating data

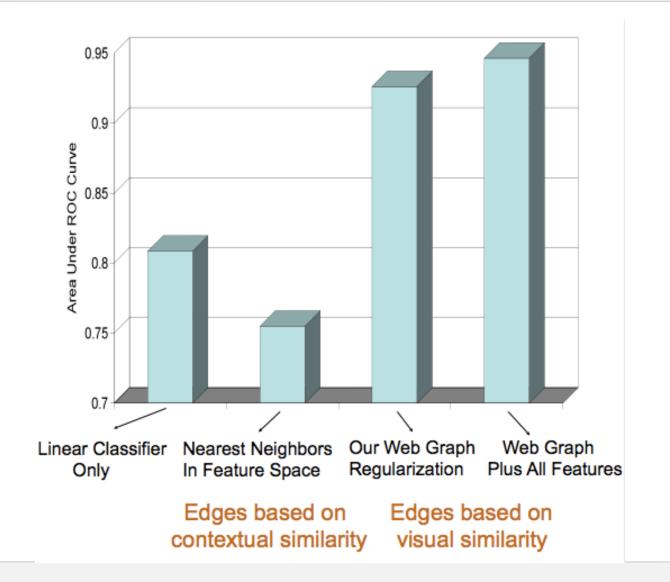
- Y! Music
- 700M ratings

Random ratings

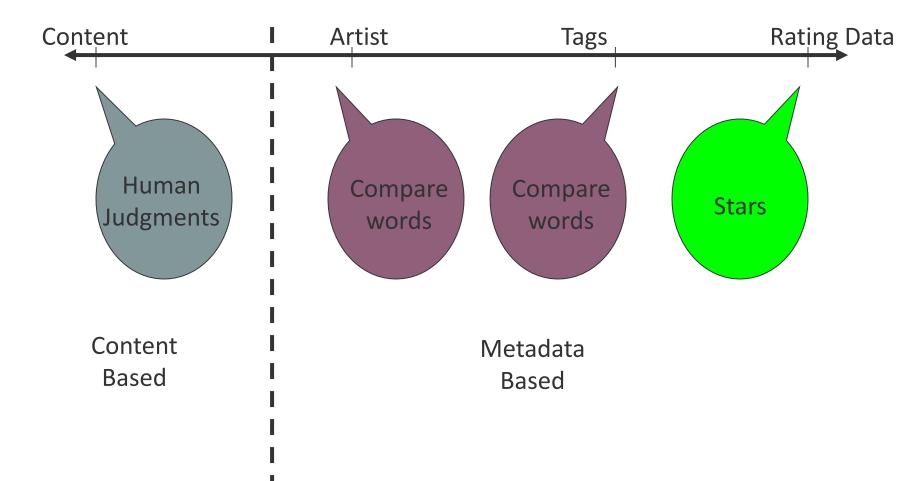
- 35k subjects
- 350k ratings



Semi-Supervised Learning



Metadata Spectrum



A Small Experiment

- 380,911 Subjects
- 1000 Jazz Songs
- 1,449,335 Ratings

