Zero-Shot Learning

Venkatesh Saligrama

Boston University

Joint Work with Greg Castanon, Joe Wang, Yuting Chen

Outline

- Conventional (Supervised) Machine Learning:
 - Large amount of training data required to train high accuracy classifiers.
- Challenge
 - Diverse range of objects, object attributes (size, materials, chemistry, composition).
 - Very few (or negligible) positive examples for many scenarios. Data collection for all these scenarios is clearly infeasible or impractical.
- Approach: Zero-Shot Learning
 - How to learn classifiers for new classes for which you have no (training) data?
- Relevance to TSA:
 - Luggage inspection: homemade explosives
 - New classes of threats for which we don't have parametric models/samples
 - Variations: chemical formula, concentration, processes
 - Discovery of new explosive classes and how to relate to what seen before
 - Video forensics: suspicious activity detection...
- How does it work? Identify latent structural thematic properties of known classes
 - Predict classifiers for new classes based on how threats manifest in latent space

Supervised (conventional) Learning

- Conventional Learning
 - Training Data
 - Images → Class-Labels
 - Xray images → Threat/non-threat
 - Video \rightarrow what activity

– Learning Problem

- Train classifier with training data
- Accurate prediction of class-labels for new images during test-time

class: horse

class: elephant

New Sample \approx Old Sample

Zero-Shot Learning

• Zero-Shot Learning

- Training Data (x,y)
 - Labeled images of Horses, elephants
 - Existing Explosive/Non-Explosive data
 - Video: Existing Activity Classes
- Learning Problem:
 - Learn a classifier for new classes that not seen in training data.
 - Zebra class, New Explosives, New suspicious activity...
- Traditional concept makes no sense

horse

elephant

New Sample $\not\approx$ Old Sample

Zebra is not seen before: How to minimize error for things not seen before

Airport Security Context

- Millions of types of homemade threats:
 - Fine grained classification

 Myriad Scanner Outputs

Key Idea: Leverage structure in descriptions

Target domain

Source domain

Horse Elephants Kingdom: Animalia Kingdom: Animalia Phylum: Chordata Phylum: Chordata Class: Mammalia Subphylum: Vertebrata Seen Order: Perissodactyla Class: Mammalia classes Family: Equidae Superorder: Afrotheria Genus: Equus Order: Proboscidea Species: E. ferus Family: Elephantidae Gray, 1821 E. f. caballus Subspecies:

What if we are given thematic information during training? Can we recognize new class from thematic information?

Key Idea: Reduction to Standard Binary Classification

- View attributes/themes (d) and image (x) as two pieces of puzzle
 - Predict whether or not they are associated

With thematic info we can pose it as conventional learning with unconventional outputs for classifiers. ⁷

Key Idea 2: Latent Topic Model

What if themes/attributes are unknown? Can we infer these themes from generic information about other classes?

Experiments: Benchmark datasets

Dataset	# instances	# attributes	# seen/unseen classes
aP&Y	15,339	64 (continuous)	20 / 12
AwA	30,475	85 (continuous)	40 / 10
CUB-200-2011	11,788	312 (binary)	150 / 50
SUN Attribute	14,340	102 (binary)	707 / 10

Performance Comparison

Method	aP&Y	AwA	CUB-200-2011	SUN Attribute	Average
Akata et al. CVPR'15	-	61.9	40.3	-	-
Lampert et al. PAMI'14	38.16	57.23	-	72.00	-
RParedes and Torr ICML'15	24.22±2.89	75.32±2.28	-	82.10±0.32	
SSE, ICCV'15	46.23±0.53	76.33±0.83	30.41±0.20	82.50±1.32	58.87
SDL, arXiv'15	<u>50.35±2.97</u>	<u>79.12±0.53</u>	<u>41.78±0.52</u>	<u>83.83±0.29</u>	<u>63.77</u>

Zero Shot Inference

Outline

- Conventional (Supervised) Machine Learning:
 - Large amount of training data required to train high accuracy classifiers.
- Challenge
 - Diverse range of objects, object attributes (size, materials, chemistry, composition).
 - Very few (or negligible) positive examples for many scenarios. Data collection for all these scenarios is clearly infeasible or impractical.
- Approach: Zero-Shot Learning
 - How to learn classifiers for new classes for which you have no (training) data?
- Intuition:
 - Leverage known classes to identify latent structural thematic properties of threats/nonthreats. Match/Identify thematic properties of new classes.
- Relevance to TSA:
 - Luggage inspection: homemade explosives
 - New classes of threats for which we don't have parametric models/samples
 - Variations: chemical formula, concentration, processes
 - Discovery of new explosive classes and how to relate to what seen before
 - Video forensics: suspicious activity detection...