Exceptional service in the national interest

A Generalizable Radiography Algorithm Test Environment for NDE Applications Andrew C. Wantuch, Jaxon M. Gittinger, Ismael Perez, Edward S. Jimenez Sandia National Laboratories, Software Systems R&D

Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

So What Who Cares?

Topic

- ATR Algorithm Development
- Problem 1: Need for a fast, *open architecture* ATR test environment that doesn't require access to systems to evaluate different types of 3rd party ATR algorithms
 - Solution: Provide 3rd party ATR algorithm developers with a way to develop ATR algorithms using pre-existing scans
 - Inspired by earlier efforts at ALERT for automated scoring (TO4)
- **Problem 2**: No standardized, open architecture method of comparing ATR algorithms
 - Solution: Provide a standardized way to benchmark algorithms
- So What?
 - Reduced barrier to entry for algorithm developers
 - Potentially speed up certification processes
 - Build confidence for adoption of 3rd party contributions

Open Threat Assessment Platform (OTAP)

- Develop and demonstrate an open architecture baggage screening prototype
- What is "Open"?
 - Standardized across vendors
 - Modular
 - Plug-and-play
- Allow 3rd Party Development of:
 - Hardware
 - Software
 - Algorithms
- Partner with security technology manufacturers

Test Environment Objectives

- Evaluate the performance of algorithms developed by thirdparties using a common image database
 - Standardized metrics
 - Standardized timing
 - Programming language agnostic
- Be simple and easy for algorithm developers to use
 - No complex emulators
 - Emulators often need every component of the screening system implemented
 - Be highly flexible to support all conceivable algorithms
 - Variable input/output methods
 - Nontraditional approaches
 - Enable iterative algorithm development

Example

- Algorithms: SIFT and SURF
 - Popular computer vision algorithms
 - Identify features in images such as corners and changes in contrast
 - Only feature locations used for this example
- Database: Radiographs of various COTS components
- Ground Truth: Features extracted by Matlab SIFT

SIFT Features

SURF Features

Example – Continued

Ground Truth: 1948 points

Algorithm 2: Use 25 Points

Algorithm 3: Use All Points (349)

Results

Results

Conclusions

- Implemented a functional Prototype in Matlab
 - Likely supports algorithms written in any programming language
 - Tested with Python and Matlab
 - Generates standardized metrics for algorithms
 - Compares multiple algorithms or multiple versions of the same algorithm
 - Helps with rapid and iterative development of new algorithms with lower barrier to entry

Next Steps

- Support DICOS files as input
- Support CT datasets
- Determine method of deployment
 - Web app?
 - Distribute to 3rd parties?
 - Keep in-house at TSA/SNL?
- Investigate security concerns
 - How can we securely execute someone else's executables?
- Work with vendors to provide what they want/need

Backup Slides

OTAP Enables Plug-and-Play

