

NS:

So What Who Cares?

- Topic
- ATR Algorithm Development
- Problem 1: Need for a fast, open architecture ATR test environment that doesn't require access to systems to evaluate different types of $3^{\text {rd }}$ party ATR algorithms
- Solution: Provide $3^{\text {rd }}$ party ATR algorithm developers with a way to develop ATR algorithms using pre-existing scans
- Inspired by earlier efforts at ALERT for automated scoring (TO4)
- Problem 2: No standardized, open architecture method of comparing ATR algorithms
- Solution: Provide a standardized way to benchmark algorithms
- So What?
- Reduced barrier to entry for algorithm developers
- Potentially speed up certification processes
- Build confidence for adoption of $3^{\text {rd }}$ party contributions

Open Threat Assessment Platform (OTAP)

- Develop and demonstrate an open architecture baggage screening prototype
- What is "Open"?
- Standardized across vendors
- Modular
- Plug-and-play
- Allow 3rd Party Development of:
- Hardware
- Software
- Algorithms
- Partner with security technology manufacturers

Test Environment Objectives

- Evaluate the performance of algorithms developed by thirdparties using a common image database
- Standardized metrics
- Standardized timing
- Programming language agnostic
- Be simple and easy for algorithm developers to use
- No complex emulators
- Emulators often need every component of the screening system implemented
- Be highly flexible to support all conceivable algorithms
- Variable input/output methods
- Nontraditional approaches
- Enable iterative algorithm development

Design

Example

- Algorithms: SIFT and SURF
- Popular computer vision algorithms
- Identify features in images such as corners and changes in contrast
- Only feature locations used for this example
- Database: Radiographs of various COTS components
- Ground Truth: Features extracted by Matlab SIFT

SIFT Features

SURF Features

Example - Continued

Ground Truth: 1948 points

Algorithm 2: Use 25 Points

Algorithm 1: Use 5 Points

Algorithm 3: Use All Points (349)

Results

Results

Conclusions

- Implemented a functional Prototype in Matlab
- Likely supports algorithms written in any programming language
- Tested with Python and Matlab
- Generates standardized metrics for algorithms
- Compares multiple algorithms or multiple versions of the same algorithm
- Helps with rapid and iterative development of new algorithms with lower barrier to entry
- Support DICOS files as input
- Support CT datasets
- Determine method of deployment
- Web app?
- Distribute to $3^{\text {rd }}$ parties?
- Keep in-house at TSA/SNL?
- Investigate security concerns
- How can we securely execute someone else's executables?
- Work with vendors to provide what they want/need

Questions?

Backup Slides
Sandia

OTAP Enables Plug-and-Play

