# Deep Neural Nets (& Security) from ZIP codes to Autonomous Vehicles

# Matthew Merzbacher

/ November 16, 2016 /



# WILL DEEP LEARNING WORK FOR SECURITY?

## → Promising in a myriad of fields

Automated & Tunable

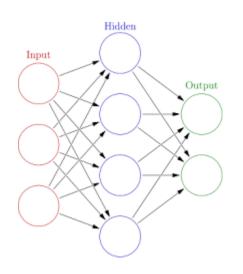
#### → But...

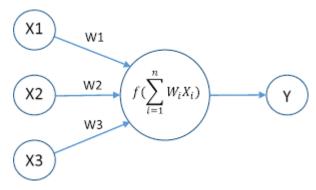
- No transfer function → no explanations or understanding of "why"
- Domain may not allow adaptive algorithms
- Small & thin objects challenging

#### → Better in closed-world

#### → Still...

Needs to be explored and assessed


#### → Outline


- Introduction to Deep Learning
- Security Questions



# **BRIEF INTRO TO NEURAL NETWORKS**

- → A gift that keeps on giving
- → Simple Model (1965)
- Training by Backpropagation
  - Requires limited model
- → Postal addresses (1997)
  - 10% initially, now 95%

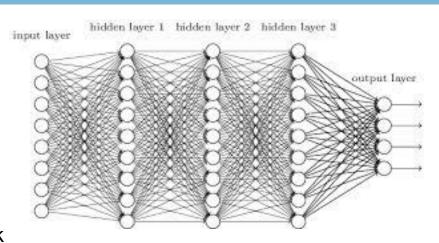








# IF ONE HIDDEN LAYER IS GOOD...


## → Multi-Layer Networks

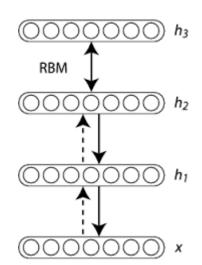
#### → Problems

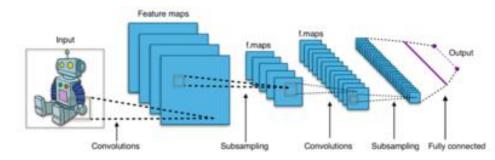
- Curse of Dimensionality
- Training critical, extremely hard
  - Computationally expensive
  - Easy to overfit fully-connected network
  - Requires lots of training data
- Vanishing Gradient problem
- Can be solved by network architecture, but that requires domain expertise

## → Answer: Deep Learning

- Abstraction of layers
- May model neuroscience




# A COUPLE OF COOL IDEAS FROM 2006 - 2007


## → Deep Belief Network

- Hinton [U. Toronto -> Google]
- Forward train one layer at a time and then touch up with backpropagation
- Dramatic reduction in training data needed
- Can be adaptive over time

#### → Convolutional Neural Nets

- LeCun [NYU -> Facebook]
- Inspired by Biology
  - Repeated convolution layer of local neurons [Depth]
  - Locality of connection
  - Pooling for abstraction
  - ReLu layer for non-linearity
- Repeat, as needed
- Final fully connected layer







# **APPLICATION: WHERE'S WALDO'S BACKPACK?**

Backpack



# Flute



Matchstick



Sea lion



Strawberry



Backpack



Traffic light



Bathing cap



Racket





## **RESULTS**

## → Image Recognition

- ImageNet Large Scale Visual Recognition Challenge
  - 1.4M images
  - Trying to locate 1000 features
- Performance close to humans
- Precision 0.44, Classification Error 6.7%
- Challenges:
  - Small & thin objects
  - Filtered images

#### → NLP

Other approaches (perhaps hybrid) may be better

## → Having consistent feedback invaluable

Data is still King!



## WILL IT WORK FOR SECURITY?

## → Promising

Automated & Tunable

#### **→** But...

- No transfer function → no explanations or understanding
- Security domain may not allow adaptive algorithms
- Small & thin objects challenging
- Better in closed-world

→ Given recent spectacular failures of Predictive Analytics, how do we proceed prudently?



# **THANK YOU!**

### **→** Some Resources

- DeepLearning.TV (YouTube)
- KDNuggets
- Deeplearning.net
- Image-net.org

