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@ Photoacoustic Sensing of Explosives (PHASE)
Concept

Utilize high energy of explosives to discriminate from ordinary materials
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* PHASE technique exploits large stored internal energy of explosives for detection
- Explosives’ acoustic emissions depend critically on optical wavelength and material absorption
* Laser vibrometry enables standoff detection (probes explosive emission within millimeters of source)
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@ PHASE Operational Concepts

Rapid Development

Long Term Development
Close Proximity Detection Scanning from UAV Platform
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CONOPS: Cued scans for explosive
residue via low altitude airborne
platform

PHASE system components well poised for rapid development for close proximity applications
UAV platform system requires significant development
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Estimated Performance for Vehicle
&l Checkpoint Inspection

Mach Number Shift x Asymmetry
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* Trace level explosives separate out from clutter and can be detected with reasonable confidence
* ROC analysis suggests very low fill trace detection is challenging against more false alarms
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Key Advantages of PHASE Technology

Industrial-Grade Organonitrates Homemade Explosives (HMES)
Nitroaromatic Nitramines Nitrate Esters . Inorganics
Peroxides ; :
¢-NO, N-NO, O-NO, NO;, ClOg
2,4-DNT RDX PETN HMTD NO; Ammonium Nitrate / Fuel Oil
2,6-DNT HMX NG TATP Ammonium Nitrate / Nitromethane
DNB EGDN DADP Urea Nitrate
TNT DNDMB H,0, mixtures ClO,  Chlorate/perchlorate variants
TNB (i.e., airline liquid threats) Metal (Al, Mg) powders
Tetryl

Current capability (266 nm excitation)
- Either demonstrated or predicted based on similar photochemistry

Potential capability (213nm excitation)
— Based on known optical absorption at this wavelength

* Potential for significantly greater standoff than other detection methods
* Noise-limited detection against realistic threat = 100 ng/cm?
* Exploits common factor of explosives — stored internal energy
- Should be adaptable to evolving threat
* Acoustic clutter and interference are exceptionally limited
* Single-pulse detection enables potentially rapid area scan rate
* System components have potential to acquire signals from static or moving platforms
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@ PHASE Innovations

Audible signals observed from
photoacoustic excitation of explosives

Microphone Measurement

Acoustic Time Signal
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High ultrasound (100 kHz — 2 MHZz)
enables explosives discrimination

Laser Vibrometer

Measured Acoustic Time Signals
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1) Discovery of unique explosives signatures in high ultrasound spectrum against very low clutter
2) Laser vibrometry senses and resolves high frequency ultrasound signals from standoff
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& PHASE Standoff Measurements

Measurement Setup

(Optical Systems Testing Facility) 0.6

0.4 DNT 5-m standoff

Explosives Residue Signal Measurements
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* Laser vibrometer developed at MIT Lincoln Lab detects explosive residue to 30 meter range
* System development possibleto 1 km — UV challenging to keep below skin safety limits
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@ Technical Overview
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@ Photo-Acoustic Excitation

Common Materials Explosive Materials
uv
Pulsed UV wavelength
Absorbed optimized
Explosive residue Photons to maximize
(solid phase) absorption

Temperature

Thin Thick Man-made _ _ High pressure
Explosive residue _—" T~ vapor generates
_— (vapor phase S acoustic and
™ conversion -
L, ) ¢ A * surface waves
Flexing surface Negligible Ablation
causes acoustic response common

and elastic waves

Explosives energy release much greater from pulsed UV excitation compared to common materials
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@ Photo-Acoustic Sensing using Laser Vibrometry

Laser Vibrometer Measures Doppler Shift

Laser Transmitted Wave

Vibrating
Backscattered Wave (Frequency Modulated) Surface

. Target Target Target

Advancing Receding Advancing

Acoustic wave causes
| aser-Mic Sensing RN temporal index of refraction change
~

@l NPV SN

ComBression : Rarefaction

Modulates Carrier Modulates Carrier

Vibration Amplitude: Excursion distance on carrier
Vibration Frequency: Doppler side band

Laser vibrometer can measure surface vibrations and acoustic waves in the vicinity (near field)
of explosives from significant standoff with fine location accuracy (~ 1 cm)
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@ PHASE Demonstration System

Optical Excitation Source Laboratory Set-up
(UV — photoacoustic generation)

Laser Vibrometer

A

Pulsed Laser 266 nm — Deep UV

Laser Doppler Vibrometer (LDV)

(acoustic emission measurement)

Custom - standoff
MIT Lincoln
Laboratory

Commercial —lab
Polytec
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PHASE Signal Dependence on
Optical Absorption and Explosives Energy

Emitted Photoacoustic Power (arb)

Effects of Optical Absorption / Wavelength

on Photoacoustic Emission
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Optical Absorption at 266nm, a

* Explosives possess high internal energy — Excitation laser wavelength chosen to match strong

optical absorption of explosives

* PHASE acoustic emission signal scales directly with explosives optical absorption
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@ PHASE Trace Explosives Sensing Capability

Sparse — Low Fill Samples

Dropcast

Finger Print
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PHASE demonstrates detection capability down to100 ng/cm? (5" generation fingerprint)
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Trace Explosives Signature Discriminants
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Multiple metrics aid in discrimination of explosives from ordinary materials
- More metrics being investigated via statistical analysis of waveforms
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@ Summary

* Urgent need to develop standoff sensing capabilities to detect explosives that
target civilians and military staff

— Detecting trace level explosives key to finding device

* PHASE innovations include
— Discovery of high ultrasonic frequency signals resulting from UV excitation
— Laser vibrometry able to sense and resolve resultant signals

* PHASE demonstrated high sensitivity and long standoff sensing capabilities
— Signals measured from 100 ng/cm? concentration of TNT
— 30-m standoff measurement achieved with estimates to 100-m reasonable
— Detection capability demonstration shows potential for screening sensor

* PHASE has potential for commercial platform
— Light weight, portable, low power, covert, safe system capabilities possible
— Applications for homeland security and overseas activities
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& Backup
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Diversity of Explosives Threats

Nitroaromatic Nitramines Nitrate Esters : Inorganics
Peroxides : :
$-NO, N-NO, 0-NO, NO,, ClO,
2,4-DNT RDX PETN HMTD NO; Ammonium Nitrate / Fuel Oil
2,6-DNT HMX NG TATP Ammonium Nitrate / Nitromethane
DNB EGDN DADP Urea Nitrate
TNT DNDMB ~ HO; mixtures ClO; Chlorate/perchlorate variants
TNB (i.e., airline liquid threats) Metal (Al, Mg) powders
Tetryl
Military Landmines — anti-personnel Covert operations (< 10 kg) No military applications
Use and vehicles, artillery rounds
Madrid Train
Terrorist
Events

[ "

Ll P Gl
Oklahoma City

Common Explosives feature — they yield high pressure and temperature release upon detonation
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Role of Explosives Detection

|

Decide to
attack

Attack the terrorist network
- Find bomb-making facilities

* Interdict transport

* Identify handlers

Plan the
Attack

Defeat the device\,v

Obtain
Resources

Prepare for | D
Attack

Conduct

- Route clearance
* Checkpoint screening

\)
\ Observe
Consequences

Attribute
Responsibility

) I

Forensics
* Find link to suppliers
 Prosecute

Detection Modalities

* Point

Measure and analyze explosives particulates
lon mass and mobility

Well established techniques

Trace quantity sensing < 1 ng/cm?

« Standoff (<1 m)

- Laser based measurement approach
- Spectrographic features

- Limited techniques

- Bulk and trace quantity sensing

» PHASE Standoff (>> 1 m)

- Laser based measurement approach
- Exploits acoustic emissions from explosives

— Path to detect trace deposits and bulk from
significant range

Standoff explosives detection role suffers greatly from threat variations, composition, phenomenology,
coverage rate, and difficulty in observing small trace explosive quantity levels
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@ Photo-Acoustic Sensing of Explosives (PHASE)

Concept

Utilize high energy of explosives to achieve detection

Active Excitation
(UV Pulsed Laser)

Mobile Standoff
100-m

Measurement Receiver
(Laser Doppler Vibrometer)

10 ns pulse

trace explosives _ Dual-modality
in finger print Signature Measurement
(DNT)

Acoustic (sound) Wave
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Explosive vaporization
produces

acoustic signal \

Particle Velocity (um/sec)

Vaporization 30
Dissociation
of explosive
) 0
Explosive residue -30
excited by laser pulse 0 05 1 15 2 25 3

Time (msec)

PHASE laser technique exploits large stored internal energy of explosives as detection mechanism
Explosives acoustic — vibrational emissions critically depend on optical wavelength and absorption
Laser vibrometry enables explosives standoff signature measurement to within millimeters of source
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@ Explosives Detection Techniques

MIT/LL Developing Techniques
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PHASE utilizes MIT Lincoln laser technologies to provide longer standoff while achieving sensitivity
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5 Theoretical Modeling of Photoacoustic Emissions
from Explosives
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